1) Combinations of Baskakov operators
Baskakov算子线性组合
2) baskakov operators
Baskakov算子
1.
Using the moduli of smoothness w (?)λ 2 (f, t)w, direct and inverse approximation theorems with Jacobi weight of Baskakov operators is established; And the relation between derivatives of the operators and the smoothness of functions to be approximated is obtained.
本文利用加权光滑模ω_~2λ(f,t)ω给出了Baskakov算子加Jacobi权逼近的正逆定理;另外,研究了加权下Baskakov算子导数与所逼近函数光滑性之间的关系。
2.
In this paper we give the equivalence theorem on simultaneous approximation for combinations of Baskakov operators.
本文建立了Baskakov算子线性组合同时逼近的等价定
3.
By means of DitzianTotik moduli of rorder, the local and global characterization theorems for the derivatives of the Baskakov operators are investigated.
研究Baskakov算子导数的点态和整体定理,用Ditzian Totik光滑模刻画该算子导数的点态和整体定理。
3) Baskakov-Durrmeyer operator
Baskakov-Durrmeyer算子
1.
Simultaneous approximation by Baskakov-Durrmeyer operator;
Baskakov-Durrmeyer算子同时逼近
2.
In this paper, by using the method of Bojanic,we gave an estimate on the rate of convergence of the Baskakov-Durrmeyer operator for the function of bounded variation on [0,∞) and proved that the estimate is essentially the best possible.
利用Bojanic方法来估计Baskakov-Durrmeyer算子对在[0,∞)有界变差函数的收敛速度,并且收敛速率是不可改进的。
4) Baskakov operator
Baskakov算子
1.
Simultaneous approximation by Baskakov operators;
Baskakov算子的同时逼近
2.
Pointwise direct and converse estimates for Baskakov operators;
Baskakov算子的点态正逆估计
3.
Two kinds of preserved porperty by modified Baskakov operator;
修正的广义Baskakov算子的两种保持性质
5) Baskakov type operators
Baskakov型算子
1.
Using some results and methods of probability theory and Abel transformation,the paper has studied the approximation of a Baskakov type operators whose limits are Gamma operator for functions of bounded variation of order p,and the pointwise convergence theorem of these operstors are obtained.
运用概率论的一些方法和结论以及Abel变换,研究了一类极限为Gamma算子的Baskakov型算子对p次有界变差函数的逼近,得到了对该函数类的点态逼近度估计的逼近定理。
6) Baskakov-Kantorovich operators
Baskakov-Kantorovich算子
1.
Pointwise Approximation Properties for the Derivatives of Baskakov-Kantorovich Operators;
Baskakov-Kantorovich算子导数的点态逼近性质
2.
The relation between higher order derivatives of Baskakov-Kantorovich operators and the smoothness of the functions to be approximated is studied.
研究了Baskakov-Kantorovich算子高阶导数与所逼近函数光滑性之间的关系,通过该算子的导数引入新算子Kn,s(f,x),给出了这个新算子的线性组合的点态逼近定理。
补充资料:非线性算子半群
非线性算子半群
semi-group of non-linear operators
非线性算子半群【脚顽一,.平of咖~h粉盯卿rat份s;no,y印yll皿a He”HHe盆“以0“epaTopool定义并作用在B以朋ch空间(Banach sPace)X的闭子集C上的单参数算子族S(t),O落t<的,且具有下列性质: 1)S(t+:)x=S(t)(S(:)x),x〔C,t,:>0; 2)S(O)x二x,x‘C; 3)对任何x〔C,函数S(:)x(在X中取值)在【0,的)上是t的连续函数 半群S(t)是。型的,若 }Js(t)x一s(t)夕l}(e“‘}}x一夕}l,x,y‘e,t>0. 0型的半群称为压缩半群(conti公ction senu-grouP). 和线性算子半群(见算子半群(s。旧l一grouPofoperators”的情形一样,可引进半群S(t)的生成算子(罗nem山堪opemtor)(或无穷小生成元(i汕拍te-Sim司罗nerator))A。的概念: Sfh)x一x A。x二Um“、‘’产犷丹 一。一档乞人仅对那些使极限存在的元素义‘C来定义.若S(0是压缩半群,A。就是耗散算子.可以想到,Ba几Icll空间X中的算子A是耗散的(dissiPative),若对x,厂刀了牙),又>0,有}}x一y一又(Ax一Ay)“)“x一y}}.耗散算子可以是多值的,这时定义中的A义代表它在x处的任何值.一个耗散算子称为m耗散的(。一diSSIPative),若Ra刊犷(I一又A)二X,对几>0.若S(t)是口型的,则A一田I是耗散的. 半群生成的基本定理(几仄城浏犯因伪eon级n onthe罗nerationof~一groups):设A一田了是耗散算子,且对充分小的又>0,Ra翔多(I一又A)包含D(A),则存在石了又下上。型半群S,(0,使得 “·‘!,一厄「了一、小,这里x‘万石刃,,且在任何有限t区间上一致收敛.(若用较弱的条件 忽“一’‘(Ra刊罗(I一“A),二)二。(其中d是集合间的距离)来代替Ran罗(I一几A),S,(t)的存在性也能被证明). 对任何算子A,存在相应的Cauchy问题(Cauc场problon) 会(:)。,u(声),:>o,u(o)一x.(·)若问题(*)有强解(s加飞50】丽on),即有在10,的)上连续,在(0,田)的任何紧子集上绝对连续,对几乎所有t>O取值于D(A)且有强导数的函数。(t),它满足关系(*),则u(t)=S,(t)x.任何函数S,(t)x是问题(*)的唯一的积分解(integlal solu-tion) 在基本定理的假设下,若X是自反空间(代批xi灾sPac。),A是闭算子(ck粥ed operator),则函数u(t)=S,(t)x,对于x‘D(A),产生Cauchy问题(*)的强解,且几乎处处有(d“/dt)(£)C通““(r),其中A”z是A:中有极小范数的元素的集合.这时半群S,(‘)的生成算子A。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条