1) fractional calculus
分数次计算
2) fractional integral operator
分数次积分算子
1.
Boundedness of the fractional integral operator in weak type Hardy space;
分数次积分算子在弱Hardy型空间中的有界性
2.
The boundedness of fractional integral operators with homogeneous kernel in weak type Hardy spaces is discussed when the kernel of the operators satisfies Dini condition.
讨论具有齐性核的分数次积分算子 ,当核函数满足 Dini条件时在弱 H1 ( IRn)上的有界性问
3.
In this paper, certain orlicz-Hardy-sobolev spaces H_k~φ(R~n)and H_s~φ(R~n)are defined byusing fractional integral operators I~s; then, it proves, under certain condition, that Hφ(R~n) is equivalent to H_k~φ(R_n) when k is a non-negative integer.
本文通过研究分数次积分算子对Orlicz-Hardy空间H_φ(R~n)的作用,引入了势空间H_s~φ(R~n),并给出了其等价刻划,同时证明在一定条件下,当k为整数时,H_k~φ(R~n)等价于Orlicz-Hardy-Sobolev空间H_k~φ(R~n)。
3) fractional integral
分数次积分算子
1.
The boundedness is established of the commutators generated by Calderón-Zygmund operators or fractional integrals with RBMO(μ) functions or Lipschitz functions in Morrey spaces on nonhomogeneous spaces.
证明了由Calderón-Zygmund算子或分数次积分算子与RBMO(μ)函数以及Lipschitz函数生成的交换子在非齐型空间上的Morrey空间中的有界性。
2.
Sufficient conditions are given for fractional integral operater I α to be bounded from weighted weak Legesgue spaces with some range p into another suitable weighted BMO and Lipschitz spaces of order β .
给出了分数次积分算子从加权Lebesgue空间到加权Lipschitz空间有界性的充分条件 ,同时给出了从加权BMO空间到加权Lipschitz空间有界性的充要条
3.
In this paper we prove the following conclusions:(1)the fractional integral operator I_l and maximal operator M_l are bounded from K_(q1)~(α,p1)(1,ωα)to W K_(q2)~(α,p2)(1,ωβ), where q1=1,0<p1≤1,p1≤p2,0<β<1,α=β(n-l)/n,q2=n/(n-l),0<l<n andω_α(x)=|x|_(-α).
本文我们证明了如下结论: (1)分数次积分算子I_l与分数次极大算子M_l是K_(q1)~(α,p1)(1,ωα)到WK~(q2)~(α,p2)(1,ωβ)中的有界算子,其中q1=1,0
4) counts per second
每秒计算次数
5) comparability computing times
相似度计算次数
6) stepwise method
分段依次计算法
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条