1) improved truncated expansion method
改进的截断展开法
1.
We give a new improved truncated expansion method.
给出了一种改进的截断展开法,利用此方法借助于计算机符号计算求得了Burgers方程和浅水长波近似方程组的精确解,其中包括孤子解,并讨论其具体应用。
2) modified F-expansion method
改进的F-展开法
1.
In this paper,we solve some fifth-order nonlinear evolution equations by using modified F-expansion method,and obtain abundant new exact solutions.
应用改进的F-展开法求解一类五阶非线性发展方程,获得了该方程的大量新的精确解。
2.
By using a modified F-expansion method,rich families of exact solutions of DGH equation with strong dispersive term have been obtained,including soliton-like solutions,trigonometric function solutions and rational solutions.
利用改进的F-展开法,求出了一类带强色散项DGH方程的一系列类孤子解,三角函数周期解和有理数解,方程结合了KdV方程的线性色散项和C-H方程的非线性色散项。
3.
In this paper, the major contents conclude: under Homogeneous balance idea, a modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of nonlinear PDEs.
本文研究的主要内容:在齐次平衡原则的思想下,充分利用F-展开法和Riccati方程在非线性偏微分方程(PDES)求解中的优良特性,提出一种改进的F-展开法。
3) truncation expansion method
截断展开法
1.
By means of Hermite transformation,the Wick-type stochastic generalized Kdv-MKdv equation was reduced to stochastic coefficient equation,then some stochastic exact solutions were obtainable via the truncation expansion method and Hermite inverse transformation.
通过埃尔米特变换将W ick类型的随机广义Kdv-MKdv方程变成广义系数Kdv-MKdv方程,利用截断展开法求出广义系数Kdv-MKdv方程的精确解,并通过埃尔米特逆变换得到了随机广义Kdv-MKdv方程的精确解。
2.
By using the truncation expansion method,the appropriate condition of exact solution to a type of generalized (KdV-Burgers) equations with variable coefficients is obtained,and an analytical solution of this type of equations is given clearly.
给出了利用截断展开法求解一类具有变系数的广义KdV Burgers方程所需满足的条件,并得到了它的1个精 确解。
3.
By using the traveling wave transformation and truncation expansion method,by combining solutions of the Riccati equation with parameter,many new exact traveling wave solutions of CD equation are obtained.
考虑(2+1)维CD方程,利用行波变换和截断展开法,并结合含参数Riccati方程解的技巧,获得了(2+1)维CD方程的许多新的精确行波解。
4) truncated expansion method
截断展开法
1.
Using the truncated expansion method, solution of (2+1) dimensional variable coefficient Kadomtsev Petviashvili equation was discussed.
利用截断展开法研究了 (2 +1)维变系数广义Kadomtsev Petviashvili方程。
2.
Exact bell shaped solitary solutions for the generalized KdV and mKdV equations with variable coefficients are obtained by the use of truncated expansion method and extended homogeneous balance method.
利用截断展开法和延拓齐次平衡法同时求出了广义变系数KdV方程和广义变系数mKdV方程的精确钟状类孤子解 。
3.
An exact soliton solutions to the equation is derived by using the extended homogeneous balance method and the truncated expansion method.
在假设系数线性相关的情况下,利用齐次平衡法得到了变系数MKdV方程的Bcklund变换,并利用此Bcklund变换得到了求解该方程的一般方法;利用截断展开法和延拓齐次平衡法得到了该方程的一组精确孤子解。
6) the extended tanh-function method
改进的tanh函数展开法
1.
By utilizing the auxiliary ordinary differential equation and its solutions,the first kind and second kind of KdV equation with variable coefficients were investigated by means of the extended tanh-function method,and abundant new exact solitary wave solutions were obtained under certain conditions.
利用该方程及其解,采用改进的tanh函数展开法研究了第1类和第2类变系数KdV方程,获得了在一定条件下的若干新精确孤波解。
补充资料:上行展开法
分子式:
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
CAS号:
性质:在平面色谱中,溶剂沿纸或薄层板的下端不断地向上移动的展开过程。是最常用的展开法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条