1) defective number
亏失数
1.
In this paper,the problem of generating symplectic group over local rings is studied,and the concept of defective number is presented.
在局部环上对辛群的生成问题进行研究,给出了辛变换的亏失数概念,将局部环上辛群的Kernel(λ)的元表示为辛平延之积。
2.
The decomposition of symplectic transformation about symplectic transvection over local rings by theory of defective number and residue number is discussed.
研究了局部环上辛变换的辛平延,利用亏失数、剩余数的理论,讨论了局部环上辛变换关于辛平延的分解。
2) defective number of transformation
变换的亏失数
3) Betti deficiency
亏数
1.
Abstract Combined with the edge-connectivity of graphs, this paper gives an upperbound of Betti deficiency on a graph in terms of chromatic number of its complement, provesthat this bound is the best possible, and obtains some new results on the lower bounds of themaximum genus of graphs.
结合边连通性,本文给出了一个图的Betti亏数由这个图的补图的着色数所确定的上界式,证明了所给出的上界式是最好的,得到关于图的最大亏格下界的若干新结果。
4) defect
[英][di'fekt] [美]['di,fɛkt, dɪ'fɛkt]
亏数
1.
The authors investigated the properties of two subspaces N(A ∞) and R(A ∞) definded by a bounded linear operator A on a Banach space, mainly the relations with the ascent, descent, nullity and defect of operator A and applied the results to the determinations of chain_finite Fredholm operators.
研究了Banach空间上由算子A定义的两个子空间N(A∞)和R(A∞)与算子A的升标、降标、零度和亏数的关系及其性质 ,并应用于链有限Fredholm算子的判
2.
A finitely generated soluble group G has derived length at most 5 and Fitting length at most 4 if the defect of every subnormal subgroup of G does not exceed 2.
由此可以证明次正规子群的亏数均≤ 2的有限生成可解群的导出长度至多为 5 ,其幂零长度至多为 4 ,这推广了McCaughan -Stonehewer、Casolo等人的结
3.
Then every nonlinear ir reducible character of G has a degree divisible by p if and only if G has a normal p-complement suchthat is abelian and It is also investigate that how all linear characters of G are distributed among the p-blocks of high est defect when G has a normal p-complement.
那么,G的每一个非线性不可约特征标的次数被p整除当且仅当G有正规p-补,使得Or(G)∩CG(P)为Abel群并且|G:G″|=|P:P′|·|Or′(G)∩CG(P)|还研究了当G有正规p-补时,G的全体线性特征标是如何分配在具有最高亏数的p-块中的。
5) Loss of Broken Stowage
亏舱损失
6) loss
[英][lɔs] [美][lɔs]
损失,亏损
补充资料:亏失
1.缺失。 2.闪失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条