说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> ε-次微分
1)  ε-Subdifferential
ε-次微分
1.
The concepts of ε-subdifferential and ε-conjugate mapping in linear topological spaces are in- troduced.
在线性拓扑空间中引入ε-次微分和ε-共轭映射的概念,系统地讨论了它们的若干性质,建立了一般向量极值问题的ε-共轭对偶定理。
2.
We first study the subdifferential of the dually marginal functions and then present their solutions by using the ε-subdifferential.
借助ε-次微分讨论一类对偶边际函数的次微分,并得到此类函数解集的特征。
2)  ε weak subdifferental
ε-弱次微分
3)  ε-subdifferential bundle
ε-次微分向量丛方法
4)  First order differential coefficient
一次微分
5)  Quadratic differential
二次微分
1.
Using the method of quadratic differential,we obtain that the Affine transformation in angle region is not an extremal mapping with its boundary values,and give explicitly an unique extremal Teichmller mapping with the same boundary values as the Affine transformation.
采用二次微分的方法,得到了角形区域Ω1的Affine变换关于其边界值不是极值映照。
6)  1.5-Differential
1.5次微分
1.
1.5-Differential cathodic stripping voltammetric determination of trace selenium in water;
1.5次微分阴极溶出伏安法测定水样中痕量硒(Ⅳ)
补充资料:次微分


次微分
subdifferential

  次微分阵由山场,图血l;cy6及一帅epe。”“幼] 定义在与空间Y对偶的空间X上的凸函数f:X卜R在点x。的次微分是Y中由下式定义的点集: 刁f(x‘、)={夕EY二f(x)一f(x。)) ),对一切x‘X}.例如,在对偶空问为X‘的赋范空问x中,范数f(x)二}{x}}的次微分取如下形式: l、二·。x·:<*:,>一11二}.。、·}一1,,力厂Iv、=/二右.X,‘U。I少1 .X,=气,1刁八,u, 以无:’‘义”一’少,右义=”·凸函数.厂在点x。的次微分是一个凸集.若f在该点连续,则次微分非空且依拓扑以Y,X)为紧的· 凸函数的次微分的作用类似于经典分析中导数的作用.与导数的一些定理类似,相应的次微分定理也成立.例如,若厂.与j:均为凸函数,且在点又‘(Domf.)自(Domf:)至少有一个函数是连续的,那么对一切x, 日ji(x)+刁jZ(x)=日(f.+儿)(x)(Moreau一Rockafellar定理(Mo代牡u一Roc沁ifellart坛”-l℃nl)). 若X中的凸集A依拓扑叮(Y,X)是紧的,则A的支撑函数的次微分与A相重合.这表示凸紧集与凸闭齐次函数之间的对偶性(亦见支撑函数(s叩portfunction);超图(s即erg触ph);凸分析(convexana-fysis)).【补注】a(X,Y)拓扑是X上的弱拓扑(叭尼ak topo-10群),它由半范数族p,(x)=l}(夕‘Y)定义;这是使所有的泛函x~为连续的最弱拓扑. 元素x*〔日f(x)称为f在x的次梯度(sub罗l-d记nt).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条