1) Eliminate to remember gradually of pass and push minimum two multiplications
渐消记忆的递推最小二乘法
2) recursive least square filtering with fading factor
渐消记忆递推最小二乘滤波
3) least mean square method with moving range
限定记忆的最小二乘法
4) recursive algorithm with gradual reducing memory
渐消记忆递推算法
1.
In this method, first, the initial plant parameter is identified with for stage of feeding wood in constant low speed, on the base, the closed-loop self-tuning control is realized by recursive algorithm with gradual reducing memory, it g.
在此基础上,应用渐消记忆递推算法进行闭环自校正控制,以保证带锯交流电机负载电流在工艺条件允许的最大电流下工作,从而确保木材据割的质量和产量,提高经济效益。
5) recursive least square
递推最小二乘法
1.
To overcome the large memory expense in the process of on-line identification by utilizing support vector machine(SVM), least squares support vector machine (LS-SVM) was combined with recursive least square(RLS), the weigh vector and bias were adjusted on-line by RLS algorithm, and on-line identification of inverse dynamic model of system was realized.
为克服支持向量机(support vector machine,SVM)在线辨识过程需要较大的内存开销的问题,该文将递推最小二乘法(recursive least square,RLS)与最小二乘支持向量机(least squares support vector machine,LS-SVM)回归相结合,利用RLS在线调整支持向量机的权向量和偏移量,实现了系统逆动力学模型的在线辨识。
2.
The recursive least square can regulate the Q and R matrix dynamicly and rapidly.
针对Riccati方程中系数矩阵Q和R的调整需凭经验和多次试凑的不足,采用递推最小二乘法对系数矩阵进行在线调整,使系数矩阵的参数进行在线优化,更好地发挥了LQR控制器的优势。
3.
Firstly,the method establishes a heat balance model through modifying the parameter of academic reac- tion heat balance expressions using the recursive least square method.
提出了一种吹炼剩余热组合预测模型,以便能根据剩余热准确确定冷料的加入量,提高冷料的使用率;首先,基于吹炼的化学反应过程得到的剩余热计算公式,采用递推最小二乘法,修正剩余热计算公式,建立热量衡算模型;然后,利用递推最小二乘法,修正剩余热计算经验公式;最后采用组合预测算法综合集成两种模型作为剩余热计算的预测模型;实际应用结果表明:利用集成方法建立的预测模型的相对误差控制在10%的波动范围内,具有较高的预测精度。
6) RLS
递推最小二乘法
1.
Application of RLS in warning controller;
递推最小二乘法在警戒控制器上的应用
2.
RLS parameter identification and emulate based on matlab/simulink;
基于MATLAB的递推最小二乘法辨识与仿真
3.
Its parameters are identified with the Recursive Least Square method(RLS).
建立了水轮机调节系统被控对象的非线性模型,用递推最小二乘法(RLS)对被控对象进行参数辨识。
补充资料:非线性最小二乘法
以误差的平方和最小为准则来估计非线性静态模型参数的一种参数估计方法。设非线性系统的模型为
y=f(x,θ)
式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1),...,(xn,yn)。估计参数的准则(或称目标函数)选为模型的误差平方和
非线性最小二乘法就是求使Q达到极小的参数估计值孌。
由于 f的非线性,所以不能象线性最小二乘法那样用求多元函数极值的办法来得到参数估计值,而需要采用复杂的优化算法来求解。常用的算法有两类,一类是搜索算法,另一类是迭代算法。
搜索算法的思路是:按一定的规则选择若干组参数值,分别计算它们的目标函数值并比较大小;选出使目标函数值最小的参数值,同时舍弃其他的参数值;然后按规则补充新的参数值,再与原来留下的参数值进行比较,选出使目标函数达到最小的参数值。如此继续进行,直到选不出更好的参数值为止。以不同的规则选择参数值,即可构成不同的搜索算法。常用的方法有单纯形搜索法、复合形搜索法、随机搜索法等。
迭代算法是从参数的某一初始猜测值θ(0)出发,然后产生一系列的参数点θ(1)、θ(2)...,如果这个参数序列收敛到使目标函数极小的参数点孌,那么对充分大的N就可用θ(N) 作为孌。迭代算法的一般步骤是:
① 给出初始猜测值θ(0),并置迭代步数i=1。
② 确定一个向量v(i)作为第i步的迭代方向。
③ 用寻优的方法决定一个标量步长ρ(i),使得 Q(θ(i))<Q(θ(i)),其中θ(i)=θi-1+ρ(i)v(i)。
④ 检查停机规则是否满足,如果不满足,则将i加1再从②开始重复;如果满足,则取θ(i)为孌。
典型的迭代算法有牛顿-拉夫森法、高斯迭代算法、麦夸特算法、变尺度法等。
非线性最小二乘法除可直接用于估计静态非线性模型的参数外,在时间序列建模、连续动态模型的参数估计中,也往往遇到求解非线性最小二乘问题。
y=f(x,θ)
式中y是系统的输出,x是输入,θ是参数(它们可以是向量)。这里的非线性是指对参数θ的非线性模型,不包括输入输出变量随时间的变化关系。在估计参数时模型的形式f是已知的,经过N次实验取得数据(x1,y1),(x2,y1),...,(xn,yn)。估计参数的准则(或称目标函数)选为模型的误差平方和
非线性最小二乘法就是求使Q达到极小的参数估计值孌。
由于 f的非线性,所以不能象线性最小二乘法那样用求多元函数极值的办法来得到参数估计值,而需要采用复杂的优化算法来求解。常用的算法有两类,一类是搜索算法,另一类是迭代算法。
搜索算法的思路是:按一定的规则选择若干组参数值,分别计算它们的目标函数值并比较大小;选出使目标函数值最小的参数值,同时舍弃其他的参数值;然后按规则补充新的参数值,再与原来留下的参数值进行比较,选出使目标函数达到最小的参数值。如此继续进行,直到选不出更好的参数值为止。以不同的规则选择参数值,即可构成不同的搜索算法。常用的方法有单纯形搜索法、复合形搜索法、随机搜索法等。
迭代算法是从参数的某一初始猜测值θ(0)出发,然后产生一系列的参数点θ(1)、θ(2)...,如果这个参数序列收敛到使目标函数极小的参数点孌,那么对充分大的N就可用θ(N) 作为孌。迭代算法的一般步骤是:
① 给出初始猜测值θ(0),并置迭代步数i=1。
② 确定一个向量v(i)作为第i步的迭代方向。
③ 用寻优的方法决定一个标量步长ρ(i),使得 Q(θ(i))<Q(θ(i)),其中θ(i)=θi-1+ρ(i)v(i)。
④ 检查停机规则是否满足,如果不满足,则将i加1再从②开始重复;如果满足,则取θ(i)为孌。
典型的迭代算法有牛顿-拉夫森法、高斯迭代算法、麦夸特算法、变尺度法等。
非线性最小二乘法除可直接用于估计静态非线性模型的参数外,在时间序列建模、连续动态模型的参数估计中,也往往遇到求解非线性最小二乘问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条