1) nonlinear best m-term approximation
非线性最佳m-项逼近
2) Nonlinear best approximation
非线性最佳逼近
3) best m-term approximation
最佳m项逼近
1.
In this paper a new kind of approximation method,called non-linear m-term one- sided approximation,is introduced by combining the non-linear best m-term approximation with the one-sided approximation.
结合最佳m项逼近和单边逼近的思想引进所谓最佳m项单边逼近的概念,给出由Fourier系数确定的光滑函数类通过三角函数系在L_p(1≤p≤∞)的最佳m-项单边逼近渐近估计以及m-项类贪婪单边逼近结果。
4) Best linear approximation
最佳线性逼近
1.
6 times of the best linear approximation’s respectively.
给出了DES的两个较大的14轮线性逼近,它们的相关系数分别为最佳线性逼近相关系数的0。
5) best polynomial approximation
最佳多项式逼近
1.
The best polynomial approximation and degree of weighted approximation of multivariate Bernstein operators;
最佳多项式逼近与多元Bernstein算子的加权逼近阶
2.
With the best polynomial approximation as a metric,the rate of approximation of the neural networks with single hidden layer to a continuous function is estimated by using a constructive approach.
以最佳多项式逼近为度量,用构造性方法估计单隐层神经网络逼近连续函数的速度。
3.
With the best polynomial approximation as a metric, we estimate the rate of Lp approximation and characterize the ap-proximation order.
以最佳多项式逼近为度量,给出Bernstein-Durrmeyer型多项式Lp逼近阶的估计,并且以一个逆向不等式的形式建立其Lp逼近的逆定理,从而用最佳多项式逼近刻画该多项式Lp逼近的特征。
6) best approximation by polynomials
多项式最佳逼近
1.
A Berntein type inequality and a converse theorem of best approximation by polynomials in H p q(p>0,q>1) spaces are proved.
本文在Hpq (p> 0, q> 1) 空间中证明了伯恩斯坦(Bernstein) 型不等式, 从而得到了关于多项式最佳逼近阶的估计的逆定理。
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条