说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> w-算子
1)  w-operator
w-算子
1.
The definition of w-operator and basic properties of weighted frames;
w-算子的定义及加权框架的基本性质
2)  W~#-dual operator
W#-对偶算子
3)  W~×-dual operator
W×-对偶算子
1.
The W~# -dual operator:T~#:Y~#→X~# and W~×-dual operator:T~×:T~#→X~ˇ of a continuous conjugate linear operator:T:X→Y are defined.
讨论了复赋范线性空间上的共轭线性算子,以及这类算子的连续性、有界性与范数,得到了连续共轭线性算子空间CCL(X,Y)与连续线性算子空间B(X,Y)之间的关系;引入并研究了复赋范线性空间X的Wˉ对偶空间X#(=CCL(X,C)),定义了共轭线性算子T:X→Y的W#-对偶算子T#:Y*→X#与W×-对偶算子T×:T#→X*,并讨论了它们的一系列重要性质。
4)  w-hyponormal operator
w-亚正常算子
1.
In this paper,we shall study a class of operators which is said to be(s,p)-w-hyponormal operators.
本文在w-亚正常算子类的基础上,引入(s,p)-w-亚正常算子类,进而讨论了该类算子的特征,包含关系,对一类特殊的该类算子还考虑了其平方性质。
5)  W-(D)~m class of linear operats
W-(D)~m类算子
6)  W-W algorithm
W-W算法
补充资料:Cauchy算子


Cauchy算子
Caudiy operator

Ca吐hy算子【Ca血hyOI界口tor;KO山“onepaTopl 常微分方程组 戈=f(t,x),x任律(1)的Q以为y算于是依赖于两个参数0和!的算子入叨,;):R”~r,对系统(l)的任何解x(t)在点t=:的值给定的情况下,它给出此解在点t=0的值 X(8,,)x(,)=x(8). 如果(l)为一线性系统,即 交=A(t)x,(2)其中A(·)是(“,刀)~Hom(r,r)(或求(“,方)~Hom(C”,C”))的一个映射,在每个区间内可和,那么对任何0,“(“,脚,Q以为y算子是一个r~r(或C”~C”)的非奇异线性映射,并且对任何0,:,叮E(:,口),它满足 X(8,8)=I,X(6,,)二X一I(,,6), X(8,刀)X(,,,)=X(6,,)和不等式,,·‘。r),,毛一…于,,一,}dt…(方程(3)对满足Caucll)问题解的存在和唯一性条件的J「线性系统(l)也.是成立的,只要对其中描述的算子的定义域作一些必要的规定.)系统 丫互A(t林+h(r)的通解是用系统叹)的ouch}]算护X(白,:)由常数变易(vana加nofcortstallts)公式 x“)一X(‘,‘)‘(:)+jX(‘·口)h(口)do表示的其中h(·)是一个在每个区间上可求和的映身、全 (a,尸,*R月(或一a方)一+e) 系统(2)的0 ochy算子满足口八抽此」尤1训「件Jc以面公式(Lio咖lle一() strogl花ldski form沮a) 夕 det‘(“,,)一expj‘r”(。“安,其中trA(七)是算子4(七)的迹. 系统(l)的(奴uchy算子X(O,:)在点x任r的导数等于系统(l)沿着解天(t)的变分方程系统的心uc场算子,其中I(t)在t=:处的值为关(基干这样的假定,即对以口和下为端点的区间内所有的t,x(t)的图形落在区域G〔R耐’内,使得厂为在G内具有连续导数的连续映射G一R找这是判断解妙却停的可禅件(di玉此”-tiabillty of the solutK,n俪th喂1狱!tto此initial耐优)定理的一种表示). 对常系数日(t)二A)的线性系统‘2),Quclly算 户由 X(夕,丁)exP((6一下洲)(4)定义(给定了线性算子B,exPB定义为艺鑫。矛/划;采用另一种方法,置口=T十飞,可通过式(4)定义expA).由(4)明显看出,Cauclly算子仅依赖于参数的差口一:: 万(口十I,下十t)火(口,幼.这方程是系统自治性的结果一--一个适合于1每个自治系统(如tono仃l(’uss声tern) 一、二[(x),x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条