1) Nonlinear Liouville theorem
非线性Liouville定理
3) Liouville type theorem
Liouville型定理
1.
Liouville type theorem of a class of semilinear parabolic equations;
一类半线性抛物型方程的Liouville型定理
2.
Liouville type theorems to semilinear generalized Baouendi-Grushin equations;
广义Baouendi-Grushin方程的非线性Liouville型定理
3.
The purpose of this paper is to obtain some Liouville type theorems for a class of degenerate semilinear parabolic inequalities,which extend the well-known results of Fujita and Kartsatos-Kurta from the Euclidean space to the Carnot group.
本文研究Carnot群上一类退化半线性抛物型不等方程的Liouville型定理,将Fujita和Kartsatos- Kurta经典的关于欧氏空间上相应方程的非平凡解的不存在性结果推广到Carnot群上。
4) Liouville theorem
Liouville定理
1.
Laurent expansion and Liouville theorem of biregular function in Clifford analysis
Clifford分析中双正则函数的Laurent展式和Liouville定理
2.
In this paper,we mainly study outside boundary value problem in exterior domain for a class of quasi-linear degenerate elliptic equations with characteristic matrix,the Liouville theorem of weak solution is derived by use of the fundamental solution G-harmonic type equation and comparison lemma.
利用G-调和型方程的基本解及比较原理,考虑了一类具有特征矩阵的退化椭圆型方程在外边界区域(无界的)上的Dirichlet外边值问题,得到其弱解只有平凡解的Liouville定理结论。
3.
harmonic function generalizes the harmonic function, the following respects are discussed: the least energy, Liouville theorem with respect to harmonic function and the relation of harmonic function and subharmonic function.
调和函数是调和函数的推广 ,它的能量最小性质、 调和函数相关的Liouville定理 ,及其具有有限 Dirichlet积分的 次调和函数和 调和函数的关系在这里都作了相应的讨论 ,并且得到了一系列与流形上调和函数相类似的结果和结论 ,对调和函数的性质作了一定的推广 。
5) singular nonlinear Sturm-Liouville problems
奇异非线性Sturm-Liouville问题
6) non-linear stability theory
非线性稳定理论
1.
Governing equations for the equivalent shells are established based on the non-linear stability theory and then solved by the Ritz method to provide theoretical u.
运用经典的壳体理论,将单层和双层球面扁网壳等代为实体薄壳并建立非线性稳定理论混合法基本方程,再用李兹法求出球面扁网壳上下临界荷载计算公式。
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条