1) fractional n-extendable
分数n-可扩图
1.
A graph G is called fractional n-extendable if G has a n-matching and each n-matching M of G can be extended to a fractional perfect matching M of G such that f(e)=1 for all e∈M.
如果图G中有n-匹配并且对任意一个n-匹配M,G中都有一个分数完美匹配f使得对于任意e∈M,f(e)=1成立,那么G被称为是分数n-可扩图。
2) N-extendable graphs
n-可扩图
1.
The main focus of matching theory is to investigate the constructions and structual properties of graphs with perfect matchings, such as elementary graphs, n-extendable graphs, k-critical graphs and k-cycle resonant graphs, and enumerate the perfect matchings of graphs.
目前匹配理论的主要研究方向之一是具有特定性质的存在完美匹配的图的构造和性质,比如:基本图、n-可扩图、k-临界图、k-圈共振图等,以及如何计算图的完美匹配数。
2.
The relations between 2n-critical graphs,(2n+1)-contractible graphs,2n-pairs contractible graphs,and n-extendable graphs are investigated.
本文得到了(2n+1)-可收缩图和2n-对可收缩图的充要条件,并讨论了2n-临界图,(2n+1)-可收缩图,2n-对可收缩图及n-可扩图间的关系。
3) n-extendable
n-可扩图
1.
Some Results of Fractional n-extendable Graphs;
分数n-可扩图的若干结果
2.
(1) Let G be a connected n-extendable nonbipartite graph with n≥2.
对连通的非二部的 n-可扩图 G(n≥ 2 ) ,得到以下结果 :(1 )若 r≤ n且 |T|≥ 2 ,则 |V(G) |≥ 2 (n+r+|T|-1 ) 。
4) n-extendable
n-可扩
1.
If n1 and G is n-extendable,then:(a) C(G-u)= and A(G-u)∪{u}is an independent set,(b) each perfect matching of G contains a near-perfect matching of each component of D(G-u)and matches all points o.
若n≥ 1和G是n-可扩的 ,则(a)C(G-u) =和A(G-u)∪ {u}是一个独立集 ,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配 ,并且它匹配A(G-u)∪ {u}的所有点与D(G-u)的不同分支的点 。
5) n extendable
n-可扩张
6) n-extendability
n-可扩性
补充资料:连分数的渐近分数
连分数的渐近分数
convergent of a continued fraction
连分数的渐近分数l阴ve吧e时ofa阴‘毗d五,比.;n侧卫xp口.坦”八卯6‘] 见连分数(con tinued fraction).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条