说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 连续θ-方法
1)  Continuous θ-method
连续θ-方法
2)  θ-continuous Functions
θ-连续
1.
θ-continuous Functions in I-Fuzzy Topological Spaces;
I-Fuzzy拓扑空间中的θ-连续函数
3)  θ-continuous correspondences
θ-连续对应
1.
θ-continuous correspondences on super-space;
超空间上的θ-连续对应
4)  θ-continuous mapping
θ-连续映射
1.
In this paper,the concept of θ-compact space characterized in terms of special cover and filter is given,properties of semiregularization of θ-compact space and θ-continuous mapping are discussed,and it is proved that a product of a compact spaceand a Hausdorff θ-compact space is θ-compact.
本文给出了θ-紧空间的概念,并用特殊的复盖和滤子加以刻划,讨论了θ-紧空间的半正则化和θ-连续映射,证明了紧与Hausdorffθ-紧空间的积空间是θ-紧的。
5)  θ continuous mapping
θ-连续映射
1.
By the use of methods of semantic in logic, some properties of them are discussed, and four equivalence conditions of θ strong continuous mapping and four necessary conditions of θ continuous mapping are obtained.
在不分明化拓扑空间中,给出了人们广为关注的拓扑学中的θ闭包的概念,并由此定义了θ-开集、θ-闭集、θ-连续映射和强θ-连续映射。
6)  continuation method
连续方法
1.
In this paper, a general framework of continuation methods for variational inequality problems is proposed by using its KKT-condition, and this framework includes the perturbation structure of many existing continuation methods.
利用变分不等式问题的KKT条件,给出了连续化方法求解变分不等式问题的一般框架,该框架包含了现存的几种连续方法;并给出一种求解的基本算法,证明了基本算法的可行性及算法的收敛性;最后用数值试验验证了算法的稳定性和有效性。
补充资料:连续方法(对非线性算子的)


连续方法(对非线性算子的)
ontinuation method (for nonlinear operators)

连续方法(对非线性算子的)【“.‘..d.meth目(肋咖di理ar.不比.加峪);呵扣理切洲旧..加.毕以盯脚~l,亦称等攀琴拓烤,时参数化族的 近似求解非线性泛函方程的一种方法.这种方法在于通过引进一个取值在一有限区间t。城t(t’的参数t把要求解的方程尸(x)=O拓广成形为F(x,O“O的方程,使得当t=扩时得到原来的方程:F(x,t’)=p(x),同时方程F(x,t0)“0或者能容易地求解,或者早已知道该方程的一个解x0(见【l]一王3]). 拓广了的方程F(x,O二0是对个别的t值:t。,…,t‘二t’逐次求解的.对t二t‘十:的方程的求解是通过某种迭代法(Newton法,简单迭代,参数变值法,[4],等等)从由解t=t‘的方程F(x,t)=0得到的解x‘开始来实现的.在关于泛的每一步应用,例如,n次Newton迭代,就分致公式 ·}、、、一,){,、、(一,、J、}.t{夕 Z一(),一k}L一。·一了‘一l;、吃咬夕!、{】’如果差抓,一rl充分小,则为保证得到r=亡卜,时的解戈十、、x,的值可能是一卜足够好的保证收敛性的初始近似(见!l」,{31,!5」)‘ 在实践中,原来的问题常常自然地依赖于某个参数,该参数就可取作t. 连续方法用于求解非线性代数方程组和超越方程(见【11,!2〕),L卜走及更一般的Banach空间中的非线性泛函方程(见【5卜{7j) 连续方法有时称为参数变值直接法(见【2],16]),也称为直接和迭代参数变值组合法.在这些方法中,通过对参数的微商把构造拓广的方程的解的问题化为求解一个带初值的微分方程问题(Cauchy间题),用常微分方程的数值积分法来解这个问题.在参数变值直接法中把最简单的Euler方法用于该Cauchy问题 么「,、11。,‘、_ 兰之=一1矛_‘万.1、IF‘x.门.钊I‘、、=文、 dIL‘、”」F(x,t卜O的解州t)的近似值x认)=x,(i二1,…,火)可通过下面的恒等式来决定: ·,、一吸I、一,!F可(/,,/,){’F;(X,!,· :二O…,k一lx、就是要求的原来方程p(x)=0的近似解.所有的值或某些值x‘+,的改进可以通过参数变值迭代法(I4」)(或Newton法)来得到 拓广方程通常以下述形式 厂(x,t,、l)=(l一又)F(x(o).2‘、,),x(。)=、,、;在一有限区间0簇只簇l上生成,或在其中用e一,来代替1一又,从而在无穷区间O簇T共刃_匕生成 参数变值法一直用于一大类问题,既用来构造解又用来证明解的存在性(例如,见!3],!41,[6].【7]).[补注]见连续方法(continuatlon method)的补注.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条