1) affine complete
仿射完备
1.
The affine complete hypersurfaces with prescribed affine curvature;
具给定仿射曲率的仿射完备的超曲面(英文)
2) affine completeness
仿射完备性
3) complete infinite rank affine Lie algebra
完备无限秩仿射李代数
1.
The level one spin representation of the complete infinite rank affine Lie algebra A ∞ is constructed,and some fundamental modules of C ∞ is given.
给出了完备无限秩仿射李代数A∞的水平为1的不可约旋量表示,并在A∞的不可约表示的基础上给出了C∞的一类基本
4) Perfect mapping
完备映射
1.
The notion of perfectly base-paracompact spaces is introduced and the following results are proved:(1) Let f:Z→Y be a perfect mapping,if Y is a perfectly base-paracompact space,then X is perfectly base-paracompact;(2)Let X is a perfectly base-paracompact.
引入了完全基-仿紧空间,并且获得了如下主要结果:(1)设f:X→Y为完备映射,Y为完全基-仿紧空间,则X是完全基-仿紧空间;(2)设X是完全基-仿紧空间,Y是紧空间,则X×Y是完全基-仿紧空间;(3)设X是完全基-仿紧空间,Y是局部紧的完全基-仿紧空间,则X×Y是基-仿紧空间。
2.
The result is that the ppl-and wppl-space are preserved by the inverse image of perfect mapping.
对ppl-空间、wppl-空间的映射性质进行了探讨,得到的主要结果为:ppl-空间、wppl-空间为完备映射的逆象所保持。
3.
The notion of countably base-mesocompact spaces is introduced and the followingresults are proved:1)Let be a perfect mapping.
文章引入了可数基-中紧空间,并且获得了如下主要结果:1)设f:X→Y为完备映射,Y为可数基-中紧空间,则X是可数基-中紧空间。
5) perfect map
完备映射
6) Qusai-perfect mapping
准完备映射
补充资料:仿射态射
仿射态射
afBne morphism
仿射态射!心ne m.,hism;a中扣.洲‘‘Mop加,M] 概形的态射f二X~S,使得S中每个开仿射子概形的原象也是一个仿射概形(affine scheme).概形X称为仿射s概形(affines一scheme)· 设s是一个概形,A是少s代数的拟凝聚层,矶是S内开仿射子概形,它们构成S的一个夜叠.那么把仿射概形Specr(U:,A)粘合起来就确定一个仿射S概形,记为Spec A.反之,可用仿射态射f:X~S定义的任何仿射S概形都同构于(作为S上概形)概形Specf.心.S概形f:Z~S到仿射S概形SpecA中S态射的集合与岁s代数层的同态A~f.几成一一对应. 概形的闭嵌人或仿射概形的任意态射都是仿射态射;仿射态射的其他例子是整态射以及有限态射.因而概形正规化的态射是仿射态射.仿射态射在复合及基变换下仍保持是仿射态射.【补注】‘一!方一,称为亨眼今射(finlte morph、“m),如果存在S的开仿射子概形的覆叠(S。),使得对所有的:,.厂‘(sa)是仿射的,并且f一’(sa)的环B。作为S。的环魂。土的模是有限生成的.态射是整的,如果氏在沌。上是整的,即每卜*6B。都在A。七是整的,这意指它足系数在注。中的泊一多项式的根或等价地,对每个一、任尽、,模‘4。卜]是有限生成一4。模.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条