1) binomial polynomial sequence
二项式型多项式序列
1.
Some identities involving Bell polynomials and binomial polynomial sequences;
关于Bell多项式与二项式型多项式序列的若干恒等式
2) sequence polynomial
序列多项式
3) polynomial series
多项式序列
1.
The distribution of zeros for nonlinear differential equations with positive arguments by method of polynomial series,and some more explicit conditions to oscillate are given.
通过构造多项式序列的方法,建立了非线性时滞方程的解的零点分布,给出了较为广泛的振动条件。
4) prs (polynomial remainder sequence)
多项式余项序列
5) polynomial of binomial type
二项式型多项式
1.
Furthermore, the functional matrix Pn,λ[x] with polynomial of binomial type related to [ n+λ n-k ] and its properties are studied.
同时,考察了与二项式型多项式相伴的函数矩阵Pn,λ[x]及其性质。
2.
The properties of the lower triangular functional matrix Ln[x] associated with a polynomial of binomial type are discussed in this paper, in which the entry-(i,j) of Ln[x] is equal to lij =(?)i-j(x)l(i,j)if i≥j and equal to 0 otherwise, with l(i, k)l(k,j) = l(i,j)(k-j i-j) and for integers n,k,i,j and real numbers x,y.
n+1阶下三角方阵Ln[x]定义为:(Ln[x])ij=(?)i-j(x)l(i,j)(如果i≥j),否则为0,且满足条件l(i,k)l(k,j)=l(i,j)(k-j i-j)和 ,即二项式型多项式函数矩阵。
6) remainder sequence of two polynomials
多项式余式序列
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。