1) κscreenable
κ-可遮
2) κ-hereditarily screenable
κ-可遮的
1.
if X is κ-hereditarily screenable and each Xα is hereditaril σ-collectionwise δ-normal spaces,then X is hereditarily σ-collectionwise δ-normal spaces.
本文主要证明如下结果:设X=lim←{Xα,παβ,Λ}(|Λ|=κ为无限基数)且X是遗传κ-可遮的,若每个Xα是遗传σ-集体δ-正规的,则X是遗传σ-集体δ-正规的。
3) screenable
可遮
1.
Theauthormainlyprovesthefollowingtworesults :LetX =lim ← {Xσ,πσρ,Σ}and eachπσ ρisopenandonto ,(1 )XishereditarilyscreenableifXishereditarily |Σ| paracompact andnormalandeachXσishereditarilyscreenable;(2 )XisscreenableifXis |Σ| paracompact andnormalandeachXσisscreenable .
( 1)如果X是遗传 |Σ| 完满正规的且每个Xσ 是遗传可遮的 ,则X是遗传可遮的 ;( 2 )如果X是|Σ| 完满正规的且每个Xσ 是可遮的 ,则X是可遮空间 。
2.
Suppose each projection π α:X→X α is an open and onto map and X is λ hyperparacompact,if each X α is screenable,then X is hyperparacompact.
设X是逆系统{Xα,παβ,Λ}的极限,|Λ|=λ,假设每个投射πα:X→Xα是开且到上的,X是λ-超仿紧的,如果每个Xα是可遮的,则X是超仿紧的。
4) k-contractible edge
κ-可收缩边
1.
In this paper we obtainthe result:In a minimally k-connected graph G which dose not contain a subgraph F,if for any vertex x∈V(G)of degree k,there exists an edge incident with x which is not con- tained in any triangle,then G has a k-contractible edge.
本文得到:如果G是极小的κ-连通图,且不合图F,若对于G中任一κ度点力,都存在与力关联的不在三边形中的边,那么G中有κ-可收缩边。
5) strong screenable
强可遮
1.
On inverse limits proposition of normal strong screenable spaces;
正规强可遮空间的逆极限性质
6) hereditarilyscreenable
遗传可遮
1.
Theauthormainlyprovesthefollowingtworesults :LetX =lim ← {Xσ,πσρ,Σ}and eachπσ ρisopenandonto ,(1 )XishereditarilyscreenableifXishereditarily |Σ| paracompact andnormalandeachXσishereditarilyscreenable;(2 )XisscreenableifXis |Σ| paracompact andnormalandeachXσisscreenable .
( 1)如果X是遗传 |Σ| 完满正规的且每个Xσ 是遗传可遮的 ,则X是遗传可遮的 ;( 2 )如果X是|Σ| 完满正规的且每个Xσ 是可遮的 ,则X是可遮空间 。
补充资料:无遮
【无遮】
(杂名)宽容物而无遮也。圆觉经曰:“惟愿不舍无遮大悲,为诸菩萨开秘密藏。”楞严经一曰:“如来开阐无遮度诸疑谤。”焰罗王供行法次第曰:“设无遮广大供养。”
(杂名)宽容物而无遮也。圆觉经曰:“惟愿不舍无遮大悲,为诸菩萨开秘密藏。”楞严经一曰:“如来开阐无遮度诸疑谤。”焰罗王供行法次第曰:“设无遮广大供养。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条