1) total genus distribution
完全亏格分布
1.
In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in .
本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式。
2.
In this paper,We obtain the total genus distributions for a class of 4-regular graphs which is a popularization of graphs posed by Yang and Liu(Acta Math Sinica,2007,50(5):1191-1200).
本文推广了Yang和Liu提出的图类,得到了一类新的四正则图,并得出了此类四正则图的完全亏格分布。
2) genus distribution
亏格分布
1.
At the basis of joint trees introduced by Yanpei Liu, by using the method which sorts the embedding surfaces of these graphs,the genus distribution of the orientable embeddings for a type of new graphs are provided.
在刘彦佩提出的联树法的基础上,通过分类一类新图类的可定向嵌入曲面求出了这类图类的可定向嵌入的亏格分布。
2.
In this paper,expressions of the genus distribution for certain sets of surfaces are provided.
本文求出了一些曲面集的亏格分布的显式表达式。
3.
In this paper,we obtain the relation of associate surfaces between dipoles and fan graphs by using the joint tree model of a graph embedding introduced by Yanpei Liu,then deduce the genus distribution and total genus distribution of fan graphs from those of dipoles which had been counted,and obtain the numbers of embeddings of fan graph on the nonorientable surfaces of genus 1-4 in .
本文,利用刘彦佩提出的嵌入的联树模型,得到了双极图与扇图的关联曲面之间的关系,进而由已知结论的双极图的亏格分布和完全亏格分布推导出扇图的亏格分布和完全亏格分布,并给出了扇图在亏格为1-4的不可定向曲面上嵌入的个数的显式。
3) genus distribution of embedding
嵌入亏格分布
4) completely distributive lattice
完全分配格
1.
Generalized inverse of matrices over completely distributive lattice;
完全分配格上矩阵的{1,2}-广义逆
2.
Special matrix over completely distributive lattice;
完全分配格上的特殊矩阵
3.
Inverse and generalized inverse of matrices over completely distributive lattice;
完全分配格上的矩阵的逆及广义逆
5) completely distributive lattices
完全分配格
1.
The following concepts are introduced: quotient, subalgebra and homomorphism of completely distributive lattices and meet continuous lattices.
介绍了完全分配格、交连续格的商集、子代数、同态的概念。
2.
By using the subdirect product representation theorem for completely distributive lattices of Raney G N,the following results are proved.
利用RaneyGN的完全分配格的次直积表示定理证明了 :完全分配格L是完备集环 L是相对原子格 ;完全分配格L是完备集环 conc(L)同构到一个幂集格 ,这里conc(L)是L的完备同余关系格 。
6) complete distributive lattice
完全分配格
1.
Covering Rough Sets Model on Complete Distributive Lattices
完全分配格上的覆盖粗糙集模型
2.
Then the upper definable sets and lower definable sets are defined and shown to form a complete distributive lattice.
为了建立模糊信息系统的约简建立理论基础,该文首先利用三角范数及其余范数给出了模糊集合近似算子的一般形式,进而定义了上、下可定义模糊集合,证明了它们分别构成完全分配格,并对其结构进行了刻画。
3.
In the last part of the paper, we have given a sufficient condition of complete distributive lattice.
本文对定向极小集作了进一步的研究,得到一系列重要性质,文章最后给出连续格为完全分配格的一个充分条件。
补充资料:完全分布族
完全分布族
distributions, complete family of
完全分布族l业示加6田拐,阴户血加川妙of;pacllpe-八e月eo.面no几.倪eeMe益cr即」 定义在可测空间(王,毋)上的概率测度族{尸。:昨。C=R“},在其上o的吧可测函数类中的唯一的无偏估计是恒等于零的函数,即如果f(·)是定义在王上的任意迅可测函数,满足关系式 J,(x)d氏(x)一o,对一切。““,‘·, 「则有户。几乎处处f(x)=O对一切0日e成立.例如,指数分布族是完全的.如果进一步假定f是有界的,关系式(*)满足,那么就称分布族{户。,0〔。}是有界宇拿的(bo世吐刘y colrLPlete).有界完全的充分统计分布族在数理统计中起着重要的作用,特别是在构造具有Neyman结构(N6yrnan struCtl此)的相似检验(s耐址此t)的问题中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条