说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 竞争型二元风险模型
1)  competitive two-dimensional risk model
竞争型二元风险模型
2)  Competitive n-dimensional risk model
竞争型的n元风险模型
3)  competing risk model
竞争风险模型
1.
The application of competing risk model in the pricing of housing mortgage-backed securities is discussed based on measuring models of prepayment and default.
在阐述提前偿付与违约风险测量模型的基础上,探讨了竞争风险模型在住房抵押贷款证券定价过程中的应用。
4)  risk meta-model
风险元模型
1.
Considering shortcomings in the current study of project risk management,this paper presents four possible research issues including risk meta-model,risk dependence analysis,risk management process and human or organization soft risk.
本文针对目前项目风险管理存在的一些问题,提出了项目风险的研究应该注重风险元模型、风险依赖性分析、风险管理过程及人和组织的软风险等四个方面,并给出了一个由模型域、数据域、技术域与过程域构成的集成化研究框架。
5)  Dual two-Poisson risk model
二元双Poisson风险模型
6)  competition model
竞争模型
1.
The bifurcation and stability of a kind of competition model;
一类竞争模型正解的分歧与稳定性
2.
Global stability of a positive equilibrium point on two-species competition model
两种群竞争模型正平衡点的全局稳定性
3.
According to the main factors impacting the port competitive power and the port competitive features within the region under the comprehensive transportation system, the paper establishes a regional port competition model based on transportation integration, makes a sensitive analysis on the inherent factors that impact the competitive power.
考虑了货源分布参数、道路运输成本、港口装卸效率、船舶停泊成本等影响港口竞争能力的主要因素,根据综合运输体系下区域内港口竞争的特点,建立了基于交通一体化的区域港口竞争模型。
补充资料:二元二次型


二元二次型
binary quadratic fonn

  二元二次型t肠nary明adratic翻盯11;血.碑姗祖卿哪曰肝幽巾那Ma] 两个变量的二次型,即形如 f=f(x,少)=ax,+bxy+创,(*)的型.如果a,b,c都是整数,则此二元二次型称为整的(in tegral).表达式d二ac一夕/4称为二元二次型的剖别式(由叨亩址旧以)或行列式(击胆川油扭址).有时表达式护一今吸二也称为判别式.二元二次型的算术理论是由P.R肛nat首创的,他证明了二任何形如4k+1的素数均可表为两个整数的平方和.二元二次型的理论是由J‘L肠脚列罗及C.F.Ga让粥完成的.二元二次型理论是n个变量的二次型理论的特殊情形;它的算术理论等价于二次域的理想论,是代数数论的渊源之一(见二次型(quadratic form);二次域(quadratic反】d)). 判别式为d的二元二次型的种数等于25一’,其中s 为d的不同素因子的个数,这要去掉d二1(m叱4)及d二0(m eds)的情形,在这两种情形时s要增加l;如果 一d是平方数,则不同的二元二次型的个数要加倍.数m 在用所有判别式为d的二元二次型组成的一个完全组 表出时,本质上不同的本原表示的个数r(d,m)等于同 余式 x‘三一d(mod用)· 的解数.就一般情形而言,存在一种算法,它把求解给 定的二元二次Dfo如antine方程(特别是方程f(x, y)“m)的间题归结为两个二元二次型的算术等价问 题. a笋0的原型f的所有整自同构可以表成 }}‘一b“/2一cu}1 }}““‘+”“/,}}, 的形状,其中广+d矿之1,而2t与u为整数(见Pcn方 程(PeU equation)).因此,两个型的等价性问题可用 二元二次型的约化理论予以解决.H.M让医。翎ki指 出,二元二次正定型的约化理论是二次正定型约化理论 的特例.整二元二次不定型的约化理论可以归结为二 次无理数的约化理论(见[2] p.叨一103及〔3] p.170 一180). 算术函数h(d)(判别式为d的整二元二次原型的类 数)在数论中起着重要的作用.已知五(d)<十的.由 51卿1宇粤(si嘴1 theorem)可对函数h(d)的增长率 得出某种结果:令d>O,则对于任给的。>0存在常数 ce及c二>0,使得 c;d’/2一子  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条