1) k-generalized unitary matrix
k-广义酉矩阵
1.
The concepts of k-generalized unitary matrix are given,its properties and relations between they and unitary matrix,symplectic matrix,Householder matrix,Hermite matrix,Hamilton matrix and generalized inverse matrix are studied.
给出了k-广义酉矩阵的概念,研究了它的性质及其与酉阵、辛阵、Householder阵、Hermite阵、Hamilton阵及广义逆矩阵之间的联系,从而推广了酉矩阵、Hermite阵、斜Hermite阵及Householder阵的相应结果,并将正交阵的广义Cayley分解推广到了广义酉矩阵。
2.
In this paper, the properties of k-generalized unitary matrix and relations between it and unitary matrix, symplectic matrix, Householder matrix are discussed, and many new results are obtained.
本文研究了k-广义酉矩阵的性质及其与酉矩阵、辛矩阵、Householder矩阵之间的联系,取得了许多新的结果,推广了酉矩阵及Householder矩阵的相应结果,特别将正交矩阵的广义Cayley分解推广到了广义酉矩阵上;并将各类酉矩阵及辛矩阵统一了起来。
2) generalized unitary matrix
广义酉矩阵
1.
In this paper, we study the tensor product and induced matrix of the finite generalized unitary matrixes and generalized (oblique) Hermite matrices.
本文研究了有限个广义酉矩阵与广义(反)Hermite矩阵的张量积和诱导矩阵。
2.
In this paper, the properties of k-generalized unitary matrix and relations between it and unitary matrix, symplectic matrix, Householder matrix are discussed, and many new results are obtained.
本文研究了k-广义酉矩阵的性质及其与酉矩阵、辛矩阵、Householder矩阵之间的联系,取得了许多新的结果,推广了酉矩阵及Householder矩阵的相应结果,特别将正交矩阵的广义Cayley分解推广到了广义酉矩阵上;并将各类酉矩阵及辛矩阵统一了起来。
3.
The concepts of generalized unitary matrix and generalized (obilque)Hermite matrix are given, their properties and relations between they and unitary matrix, conjugate matrix,Hermite matris,Hamilton matrix and gereralized inverse matris are studied, and many new results are obtained.
给出了广义酉矩阵与广义(斜)Hermite矩阵的概念,研究了它们的性质及其与酉阵、共轭辛阵、Hermite阵、Hamilton及广义逆矩阵之间的联系;取得了许多新的结果;推广了西矩阵、Hermite阵与斜Hermite阵间的相应结果,特别将正交阵的广义Cayley分解推广到了广义西矩阵上;将各类酉矩阵、Hermite矩阵及广义逆矩阵统一了起来。
3) generalized sub-unitary matrix
广义次酉矩阵
1.
Based on sub-unitary matrix,presented the concept of generalized sub-unitary matrix,researched on its nature and come to certain new conclusions about generalized sub-unitary matri
在次酉矩阵的基础上,给出了广义次酉矩阵的概念,并研究了广义次酉矩阵的一些性质,得出了广义次酉矩阵的若干新结论。
4) K sub-unitary matrix
K-次酉矩阵
1.
The concept of K-sub-nuitary matrix is proposed,and some decision theorems about K sub-unitary matrix are discussed.
给出了K-次酉矩阵概念,讨论了K-次酉矩阵的若干判定定理。
5) general-ized k-layer Nekrasov matrix
广义k层Nekrasov矩阵
6) generalized row(column) unitary symmetric matrix
广义行(列)酉对称矩阵
1.
The full rank factorization and Moore-Penrose inverse for generalized row(column) unitary symmetric matrix
广义行(列)酉对称矩阵的满秩分解及其Moore-Penrose逆
补充资料:酉矩阵
酉矩阵
unitary matrix
酉矩阵(tlllitary帕tri又;yH“Tap“翻Ma印Itua} 复数域C上的方阵A二}“*日,它的所有行构成一个规范正交系,即 门对于j=k. a,1“*1+”‘+“!·厅*一}o对于、‘、·i,k二1,…,n.在酉空间〔四tarys琳ce)里,从一个规范正交基到另一个规范正交基的变换是由一个酉矩阵来实现的.酉变换(unitaryt~fonllatjon)关于一个规范正交基的矩阵也是(称为)一个酉矩阵.元素为复数的方阵A是酉的,当且仅当它满足下列条件之一: 1)通’通=£; 2)A注‘=石: 3)A’二A一’; 4)A的所有列构成一个规范正交系(这里A‘是A的共扼转置矩阵). 酉矩阵的行列式是模为1的复数. 0 .A.HBaHoBa撰【补注】 【AI 1 Noll,W.,Finite dinr们sional sPaces,Nijhoff,1987, 63. IA21G把ub,W.,Lineara」geb用,Sp力nger,1975,329. 蒋滋梅译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条