1) Poisson regression model
泊松回归模型
1.
Based on the survey data about 270 farmer households from 10 cities and counties in Anhui province,this paper analyzes the influencing factors of the agricultural industrialization,and studies the specific impacts of these influencing factors through using Poisson regression model.
基于对270户农户的实地调研数据,分析了农业产业化的影响因素,并利用泊松回归模型实证研究了各相关因素的具体影响。
2) poisson regression
泊松回归
1.
time series analysis Poisson regression was used to evaluate the relationship between cause-specific deaths and air pollutant, con sidering the potential confounding factors such as seasonal and long-term patte rns, meteorological factors (air temperature, air humidity), as well.
以呼吸系统疾病、循环系统疾病、冠心病、慢性阻塞性肺病和消化系统肿瘤疾病死亡人数分别为因变量 ,大气污染物浓度和平均温度、湿度为自变量 ,进行了泊松回归分析。
2.
When the data appear to be zero-inflated,zero-inflated poisson regression model will be applied,and the proportion parameter φ of structural zeros is usually supposed to be constant and not affected by rating factors.
在保险产品的分类费率厘定中,最常使用的模型之一是泊松回归模型。
3.
Poisson regression model is usually used in forecasting claim counts, but when the data appears to be over-dispersed, it will be not suitable.
索赔次数预测模型中通常考虑泊松回归模型,但当索赔次数中出现过离散问题时,泊松回归模型就不再适合。
3) Poisson circle model
泊松旋回模型
4) POSSION model
泊松模型
1.
0 in future 50a were calculated by applying Brownian Passage Time and Possion models.
运用时间相依的布朗过程时间模型和泊松模型,分别计算了炉霍潜源和道孚潜源7。
5) Poisson model
泊松模型
1.
Improved restoration method based on Poisson model;
改进的基于泊松模型的极大似然恢复算法
2.
Based on the long-term monitoring data of post-construction settlement of the loess subgrade of the Lanzhou-Wuwei Line Ⅱ,the quasi consolidation model was set up and contrasted with other models such as the Poisson model,index model, logarithm model and hyperbolic model.
利用兰武二线黄土路基工后沉降的长期观测数据,提出一种新的分析预测模型——似固结模型,并与泊松模型、指数模型、对数模型、双曲线模型的预测结果进行对比分析。
3.
The characteristics of the modified Poisson model and its applicability were analyzed and a modified Poisson-superposition wavelet neural net model was proposed.
分析了改进泊松模型的特点和适用性,提出了改进泊松-复合小波神经网络修正模型。
补充资料:多元线性回归模型
分子式:
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条