2) integral theorems
积分定理
1.
The relation between exterior differential and integral theorems is discussed,and a simple formula describing integral formula is obtained.
介绍了外积与外微分,讨论了外微分与积分定理的关系,得出了积分公式的简单表示形式;从热力学第二定理出发,利用外微分构造了熵、焓以及吉布斯函数的表达式。
3) Cauchy integral theorem
Cauchy积分定理
5) the definite integral middle value
定积分中值定理
6) integral mean value theorem
积分中值定理
1.
Analytic quality of "intermediate value" for integral mean value theorem;
积分中值定理“中间点”的分析性质
2.
A estimates of the asymptotic rate of convergence for "Intermediate point" of integral mean value theorem;
积分中值定理“中间点”收敛速度的一个估计
3.
, the integral mean value theorem, is applied to simplifying the inner product of strain rate vector.
提出了一种以积分中值定理简化应变速率矢量内积的积分方法·首先将有鼓形圆盘锻造等效应变速率表示成二维应变速率矢量,然后采用积分中值定理确定应变速率比值函数及该矢量的方向余弦,再对其内积进行了逐项积分;其次,将逐项积分结果求和并给出相应的鼓形参数b的计算公式及应力影响因子的解析解·最后经压缩试验将应力状态系数与总压力计算结果与Avitzur公式的相应计算结果及压力机实测值进行了比较,表明计算结果与Avitzur上界近似基本一致,但高于实测结果·道次压下率在10%~33%范围内相对误差为1·9%~9%
补充资料:Cauchy积分定理
Cauchy积分定理
Caudiy integral theorem
中,也能发现类似的表述.Cauchy的证明中用了导数f‘仁)为连续的附加假设;E .Goursat(123)给出了第一个完整的证明、Cauchy积分定理所表达的解析函数的特性完全刻画了这类函数(见M浓口定理(Morera theo-rem))、因而解析由数的所有基本性质都可由C auchy积分定理推出. 对于平面C中或R止mann曲面上任意的区域D,Cauchy积分定理可表述如F^:如果刀z)是区域D内的正则解析函数,则沿在D内同伦于0的任一可求长闭曲线?〔D,f(习的积分等于零 Cauchy积分定理在多复变量解析函数情形的推广是Cauchy一poin以r己定理(Cauclly一Poln以r己theo-rem):如果j(:)(:二仁气·…:。))是复空间C”(n)l)的区域D内的正则解析函数,则对任一具有光滑边界下二日G的月+1维曲面G任D.有 厂川必二认其中f(习dz是同调微分形式的简写 f(:)d:=力:、,一:。)d:,/】·八d:。.当n“]时,曲面G与域D具有相同的维数:n+]二2月(此即经典Cauchy定理的情形)当n>1时,G的维数比D的维数低:。斗一1<2。亦见解析函数的残数(resi-due of an analyt,c fonctlon);Cau由y积分(Cauchyintegral).【补注】在【21中,Goursat仍假定丫f‘(:)的连续性、很快他就看出如何去掉这个假定,见{AU.〔翅。由y积分定理【〔翅朋山y integ司the吮m;Ko川11毗-Terpa几‘“a,reopeMal 如果f(:)是单复量:在复平面C=C’的单连通域D内的正则解析函数,则f(z)沿D内任一可求长闭曲线,的积分等于零: jf(‘)dz二“· 丫Cauchy积分定理的一个等价叙述是:积分 b jf(:)dz,么”〔D不依赖于域D内定点a,b之间的积分路径的选择.这在本质上是A.L.Cauchy提出这条定理(1825)时的原始表述(见111):在C.F.Gauss的一封信(1811)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条