说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 积分定理
1)  integral theorem
积分定理
2)  integral theorems
积分定理
1.
The relation between exterior differential and integral theorems is discussed,and a simple formula describing integral formula is obtained.
介绍了外积与外微分,讨论了外微分与积分定理的关系,得出了积分公式的简单表示形式;从热力学第二定理出发,利用外微分构造了熵、焓以及吉布斯函数的表达式。
3)  Cauchy integral theorem
Cauchy积分定理
4)  Bode's integral theorem
Bode积分定理
5)  the definite integral middle value
定积分中值定理
6)  integral mean value theorem
积分中值定理
1.
Analytic quality of "intermediate value" for integral mean value theorem;
积分中值定理“中间点”的分析性质
2.
A estimates of the asymptotic rate of convergence for "Intermediate point" of integral mean value theorem;
积分中值定理“中间点”收敛速度的一个估计
3.
, the integral mean value theorem, is applied to simplifying the inner product of strain rate vector.
提出了一种以积分中值定理简化应变速率矢量内积的积分方法·首先将有鼓形圆盘锻造等效应变速率表示成二维应变速率矢量,然后采用积分中值定理确定应变速率比值函数及该矢量的方向余弦,再对其内积进行了逐项积分;其次,将逐项积分结果求和并给出相应的鼓形参数b的计算公式及应力影响因子的解析解·最后经压缩试验将应力状态系数与总压力计算结果与Avitzur公式的相应计算结果及压力机实测值进行了比较,表明计算结果与Avitzur上界近似基本一致,但高于实测结果·道次压下率在10%~33%范围内相对误差为1·9%~9%
补充资料:Cauchy积分定理


Cauchy积分定理
Caudiy integral theorem

  中,也能发现类似的表述.Cauchy的证明中用了导数f‘仁)为连续的附加假设;E .Goursat(123)给出了第一个完整的证明、Cauchy积分定理所表达的解析函数的特性完全刻画了这类函数(见M浓口定理(Morera theo-rem))、因而解析由数的所有基本性质都可由C auchy积分定理推出. 对于平面C中或R止mann曲面上任意的区域D,Cauchy积分定理可表述如F^:如果刀z)是区域D内的正则解析函数,则沿在D内同伦于0的任一可求长闭曲线?〔D,f(习的积分等于零 Cauchy积分定理在多复变量解析函数情形的推广是Cauchy一poin以r己定理(Cauclly一Poln以r己theo-rem):如果j(:)(:二仁气·…:。))是复空间C”(n)l)的区域D内的正则解析函数,则对任一具有光滑边界下二日G的月+1维曲面G任D.有 厂川必二认其中f(习dz是同调微分形式的简写 f(:)d:=力:、,一:。)d:,/】·八d:。.当n“]时,曲面G与域D具有相同的维数:n+]二2月(此即经典Cauchy定理的情形)当n>1时,G的维数比D的维数低:。斗一1<2。亦见解析函数的残数(resi-due of an analyt,c fonctlon);Cau由y积分(Cauchyintegral).【补注】在【21中,Goursat仍假定丫f‘(:)的连续性、很快他就看出如何去掉这个假定,见{AU.〔翅。由y积分定理【〔翅朋山y integ司the吮m;Ko川11毗-Terpa几‘“a,reopeMal 如果f(:)是单复量:在复平面C=C’的单连通域D内的正则解析函数,则f(z)沿D内任一可求长闭曲线,的积分等于零: jf(‘)dz二“· 丫Cauchy积分定理的一个等价叙述是:积分 b jf(:)dz,么”〔D不依赖于域D内定点a,b之间的积分路径的选择.这在本质上是A.L.Cauchy提出这条定理(1825)时的原始表述(见111):在C.F.Gauss的一封信(1811)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条