1) damped simple pendulum
有阻尼单摆
2) non-demped pendulum
无阻尼单摆
1.
Discussion on the pricise solution in the motion equation of a non-demped pendulum
无阻尼单摆运动方程精确解的讨论
3) damped pendulum
阻尼摆
1.
A method of using computer aided simple pendulum experiment is discussed The comparison of numerical solution with experiment of a damped pendulum is presente
讨论了计算机辅助单摆实验的方法 ,并结合阻尼摆给出了数值解和实验结果比较曲
5) undamped pendulum
无阻尼摆
6) Undamped Single Pendulum equation of motion
无阻尼单摆运动方程
补充资料:单摆
单摆 simple pendulum 质点振动系统的一种,是最简单的摆。绕一个悬点来回摆动的物体,都称为摆,但其周期一般和物体的形状、大小及密度的分布有关。但若把尺寸很小的质块悬于一端固定的长度为 l且不能伸长的细绳上,把质块拉离平衡位置,使细绳和过悬点铅垂线所成角度小于5°,放手后质块往复振动,可视为质点的振动,其周期T只和l和当地的重力加速度g有关,即 ,而和质块的质量、形状和振幅的大小都无关系,其运动状态可用简谐振动公式表示,称为单摆或数学摆 。如果振动的角度大于 5°,则振动的周期将随振幅的增加而变大,就不成为单摆了。如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了。伽利略第一个发现摆的振动的等时性,并用实验求得单摆的周期随长度的二次方根而变动。惠更斯制成了第一个摆钟。单摆不仅是准确测定时间的仪器也可用来测量重力加速度的变化。惠更斯的同时代人天文学家J.里希尔曾将摆钟从巴黎带到南美洲法属圭亚那,发现每天慢 2.5分钟,经过校准,回巴黎时又快 2.5分钟。惠更斯就断定这是由于地球自转引起的重力减弱。I.牛顿则用单摆证明物体的重量总是和质量成正比的。直到20世纪中叶,摆依然是重力测量的主要仪器。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条