1) vector saddle point
向量鞍点
1.
In this paper, by using a class of connected B-vex functions, connected pseudo B-vex and connected quasi B-vex functions, some vector saddle point results are obtained for non-smooth multi-objective programming.
本文在已提出的一类连通B-凸函数,以及连通B-伪凸和连通B-拟凸函数的基础上,得到了这类非光滑多目标规划的几个向量鞍点结论。
2.
By using scalarization methods and fixed point technique, some existence theorems of solutions for vector variational inequalities,vector saddle point theorems and vector minimax theorems are given.
借用纯量化方法和不动点定理引入和研究H-空间中向量值的多值映家的向量变分不等式定理、向量鞍点定理及向量极大极小定理。
2) vector Fritz John saddle point
向量Fritz-John鞍点
3) Vector Kuhn Tucker saddle point
向量Kuhn-Tucker鞍点
4) generalized vector Fritz-John saddle point
广义向量Fritz-John鞍点
1.
In ordered linear spaces,generalized vector Fritz-John saddle point and generalized vector Kuhn-Tucker saddle point of set-valued optimization problems with generalized inequality constraints were defined,and the relations between them were established.
在序线性空间中定义了带广义不等式约束集值优化问题的广义向量Fritz-John鞍点和广义向量Kuhn-Tucker鞍点,建立了二者之间关系。
5) generalized vector Kuhn-Tucker saddle point
广义向量Kuhn-Tucker鞍点
1.
In ordered linear spaces,generalized vector Fritz-John saddle point and generalized vector Kuhn-Tucker saddle point of set-valued optimization problems with generalized inequality constraints were defined,and the relations between them were established.
在序线性空间中定义了带广义不等式约束集值优化问题的广义向量Fritz-John鞍点和广义向量Kuhn-Tucker鞍点,建立了二者之间关系。
6) saddle value
鞍点量
1.
This paper studies transformations used for calculating saddle values and focus values, and obtains two classes of general transformation which change weak saddles into weak focuses.
通过对鞍点量和焦点量计算时常用的变换进行研究,得到了两类把细鞍点化为细焦点的一般变换,并利用其中的一类推导出了不含二次项的三次系统的鞍点量和可积条件。
2.
In this paper, we apply a new algorithm to obtain the formulae of saddle values and de- rive the integrable for a class of cubic systems.
本文用一种新的方法,对不含二次项的平面三次系统,给出了其鞍点量公式,导出了该系统可积的充要条件,并指出了用不同计算方法所求得的鞍点量之间的关系。
补充资料:鞍点
分子式:
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
CAS号:
性质:数学上同时具备极大与极小性质的点。应用于三维势能面及裂变核势能曲面上,与反应坐标相垂直的方向上过渡态位于势能的最低点,发生对称伸缩振动。在沿反应坐标方向上过渡态位于势能的最高点,发生不对称伸缩振动。过渡态在势能面所处的这一点即势能面的鞍点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条