说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 次奇强协调
1)  weak odd strong harmony
次奇强协调
1.
In this paper, we define a class of new graph-spoon star graph and as wellas weak odd strong harmony graph, is defined, the writers give Stn P1C4’s odd graceful labeling、k- graceful labeling and weak odd strong harmony labeling,and prove that the Stn P1C4 is a odd graceful graph, k-graceful graph and weak odd strong harmony graph.
该文定义了一类新的图形——星勺图StnP1C4,并定义了图的次奇强协调性,同时给出了它的奇优美标号、k-优美标号及次奇强协调标号,从而证明了星勺图StnP1C4是奇优美图、k-优美图和次奇强协调图。
2)  weak odd strong harmoniousness
次奇强协调性
3)  odd strong harmonious graph
奇强协调图
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
4)  Odd strongly harmonious labelings
奇强协调值
5)  odd strongly harmonious
奇强协调性
6)  odd strong harmonious labeling
奇强协调标号
1.
If there exist a mapping f:V→{0,1,2,…,2|E|-1} Satisfied 1) u,v∈V,if u≠v,then f(u)≠f(v);2) e1,e2∈E,if e1≠e2,then g(e1)≠g(e2),here g(e)=f(u)+f(v),e=uv;3) {g(e)|e∈E }={1,3,5,…,2|E|-1},then G is called odd strong harmonious graph and f is called odd strong harmonious labeling of G.
对简单图G=〈V,E〉,如果存在一个映射f:V→{0,1,2,…,2 E-1}满足1)对任意的u,v∈V,若u≠v,则f(u)≠f(v);2)对任意的e1,e2∈E,若e1≠e2,则g(e1)≠g(e2),此处g(e)=f(u)+f(v),e=uv;3){g(e)e∈E}={1,3,5,…,2 E-1},则称G为奇强协调图,f称为G的奇强协调标号。
补充资料:临江仙 次月卿贺生日词韵戊午岁 时奇学
【诗文】:
吾族英才常接迹,年来似晓星稀。子言日出喜能卮。先兄元不死,儿白马良眉。青佩次孙欣得与,樊川小*名宜。香分甲午月宫枝。各当传祖钵,教养愿观颐。


【注释】:



【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条