1) vertex strong total chromatic number
点强全色数
1.
The vertex strong total chromatic number of general graphs K(n,m);
广义图K(n,m)的点强全色数
2.
A proper k-total coloring σ of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for v∈V(G),the elements in N[v] are colored with different colors,where N[v]={u|vu∈E(G)}∪{v};and χvsT(G)=min{k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G.
并且vχsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数。
3.
A proper k-total coloring σ of graph G(V,E)is called a k-vertex strong total coloring of G(V,E)if and only if for ν∈V(G),the elements in N[ν]are colored with different colors,where N[ν]={u|νu∈E(G)}∪{ν};and χ~(νs)_(_T)(G)=min{k|there is a k-vertex strong total coloring of G}is called the vertex strong total chromatic number of G.
并且χνsT(G)=min{k|存在G的一个k-点强全着色}称为G(V,E)的点强全色数。
2) strong total chromatic number
强全色数
3) adjacent-vertex strongly-distinguishing total coloring
邻点强可区别全色数
4) adjacent strong vertex-distinguishing total coloring
邻点可区别的强全色数
1.
Suppose f is a proper total coloring of G which use k colors,for uv∈E(G), it s satisfied C(u)≠C(v),where C(u)={f(u)}∪{f(v)|uv∈E(G)}∪{f(uv)|uv∈E(G)}, then f is called a k adjacent strong vertex-distinguishing total coloring of graph G(k-ASVDTC for short)and χ ast (G)=min{k|k-ASVDTC of G} is called the chromatic number of adjacent strong vertex-disting.
设 f为用 k色时 G的正常全染色法 ,对 uv∈ E(G) ,满足 C(u)≠ C(v) ,其中C(u) ={ f(u) }∪ { f(v) |uv∈ E(G) }∪ { f(uv) |uv∈ E(G) } ,则称 f 为 G的 k邻点可区别的强全染色法 ,简记作 k- ASVDTC,且称 χast(G) =min{ k|k- ASVDTC of G}为 G的邻点可区别的强全色数 。
5) vertex strong total coloring
点强全染色
1.
Method on vertex strong total coloring of Halin graphs;
Halin图的一个点强全染色法
2.
A proper k-total coloring σ of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for v∈V(G),the elements in N\ are colored with different colors,where N{u|vu∈E(G)}∪{v};and χ~~(vs)__T(G)=min{k| there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G.
图G(V,E)的一个正常k-全染色σ称为G(V,E)的一个k-点强全染色,当且仅当v∈V(G),N[v]中的元素着不同颜色,其中N[v]={u vu∈V(G)}∪{v};并且χvTs(G)=m in{k存在G的一个k-点强全染色}称为G的点强全色数。
3.
A proper k-total coloring / of the graph G(V, E) is said to be a fc-vertex strong total coloring if and only if for every v∈V(G), the elements in N[v] are colored with different colors, where N[v]={u|uv∈V(G)}∪{v}.
图G(V,E)的一个k-正常全染色f叫做一个k-点强全染色当且仅当对任意v∈V(G), N[v]中的元素被染不同色,其中N[v]={u|uv∈V(G)}∪{v}。
6) vertex strong total coloring
点强全着色
1.
A proper k-total coloring σ of graph G(V,E) is called a k-vertex strong total coloring of G(V,E) if and only if for v∈V(G),the elements in N[v] are colored with different colors,where N[v]={u|vu∈E(G)}∪{v};and χvsT(G)=min{k|there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G.
图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当v∈V(G),N[v]中的元素着不同颜色,其中N[v]={u|vu∈E(G)}∪{v}。
2.
A proper k-total coloring σ of graph G(V,E)is called a k-vertex strong total coloring of G(V,E)if and only if for ν∈V(G),the elements in N[ν]are colored with different colors,where N[ν]={u|νu∈E(G)}∪{ν};and χ~(νs)_(_T)(G)=min{k|there is a k-vertex strong total coloring of G}is called the vertex strong total chromatic number of G.
图G(V,E)的一正常k-全着色σ称为G(V,E)的一个k-点强全着色,当且仅当ν∈V(G),N[ν]中的元素着不同颜色,其中N[ν]={u|νu∈E(G)}∪{ν}。
补充资料:椐椐强强
1.相随貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条