1) Additive surjective map
加法满射
1.
Additive surjective map of strong preserve the set of rank permutability on triangular matrix spaces;
三角矩阵空间强保持秩可交换的加法满射
2.
We characterize the additive surjective map on T 2(F) and f(A)f(B)= f(B)f(A) if and only if AB = BA.
F是任意的一个域,T2(F)表示F上2×2三角矩阵代数,刻画了T2(F)到自身满足f(A)f(B)=f(B)f(A),当且仅当AB=BA的加法满射f的形式,同时得到T2(F)到自身满足A1A2…Ak=Ak Ak-1…A1,当且仅当g(A1)g(A2)…g(Ak)=g(Ak)g(Ak-1)…g(A1)的加法映射g形式和T2(F)到自身满足A1A2…Ak=Aτ(1)Aτ(2)…Aτ(k),当且仅当h(A1)h(A2)…h(Ak)=h(Aτ(1))h(Aτ(2))…h(Aτ(k))的加法映射h形式,其中τ∈Sk,S k是k元对称群。
3.
Characterized the additive surjective map onM2(D) and rank(f(A1)f(A2))=rank(f(A2)f(A1)) if and only if rank(A1A2)=rank(A2A1).
D是特征不为2除环,M2(D)表示D上2×2全矩阵代数,文中所刻画的f是M2(D)到自身满足rank(f(A1)f(A2))=rank(f(A2)f(A1))当且仅当rank(A1A2)=rank(A2A1)的加法满射。
2) additive map
加法映射
1.
In this paper,the authors characterize the additive maps from H_n(D) into H_m(D) that preserve rank 1 in some addition.
本文刻画了某条件下从Hn(D)到Hm(D)保秩1的加法映射。
2.
Struction of additive maps preserving rank-1 matrices from S_n(C) to H_n(C) are characterized.
确定了从Sn(R)到Hn(C)保秩1的加法映射的结构。
3.
In this paper it is shown that if f :Mmn(F)→Mpq(F) is an additive map preserving rank-one matrices and satisfying rank(f (G) + f (H)) >1 for some .
若一个映射f:Mm(nF)→Mpq(F)满足f(M1mn(F))哿M1pq(F)且f(A+B)=f(A)+f(B),坌A,B∈Mmn(F),则称f是保持秩1矩阵的加法映射。
3) additive mappings
加法映射
1.
Rank-one nonincreasing additive mappings on symmetric matrices;
对称矩阵空间上秩1非增长的加法映射(英文)
2.
The authors characterize additive mappings ψ on V × V such that ψ(Qs) ? Qs for a ?xed s.
刻划了V上满足Ψ(Qs) ? Qs的加法映射Ψ。
6) full mapping
满射
1.
It expounds the calculting formulas of single mapping and full mapping and explains their application in solving the problem of permutations and combinations.
本文用映射的观点对排列组合问题进行了分析与思考 ,论述了单射个数与满射个数的计算公式及其在一些排列组合问题中的应
补充资料:满射
满射
surjection git surjective mapping
满射[刘既。扣或surjeetiveff只pp吨;cIO匹eK”“,」,集合A到集合B上的 映射f满足f(A)二B,即满足对每一boB存在aoA,使得f(a)=b.既可以说“f是满射”,也可以说“f是从A到B上的映射”. 0 .A.物aHosa撰[补注]亦见单射(injeet沁n);一一映射(b石eetion);集合的置换(pen力utation of a set)·赵希顺译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条