说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单向S-对偶粗决策
1)  one direction S-dual rough decision
单向S-对偶粗决策
1.
By using the dual of one direction S-rough sets,a generation method of one direction S-dual rough decision law was presented and the concepts of upper decision law,lower decision law,one direction S-dual rough decision law kernel and one direction S-dual rough decision law band were proposed.
利用单向S-粗集对偶,给出单向S-对偶粗决策规律生成方法;给出上决策规律,下决策规律,单向S-对偶粗决策规律核,单向S-对偶粗决策规律带的概念。
2)  one direction S-rough decision
单向S-粗决策
1.
By using one direction S-rough sets,a method of one direction S-rough decision law generation is presented and the concepts of upper decision law,lower decision law,one direction S-rough decision law kernel,one direction S-rough decision law band and one direction S-rough decision law hull are proposed.
利用单向S-粗集,给出单向S-粗决策规律生成方法;给出上决策规律,下决策规律,单向S-粗决策规律核,单向S-粗决策规律带,单向S-粗决策规律壳的概念;利用这些概念,提出下决策规律传递定理,上决策规律传递定理,F-分离的属性定理,粗决策规律挖掘定理,与粗决策规律挖掘准则。
3)  dual of one direction S-rough sets
单向S-粗集对偶
1.
Singular rough sets(S-rough sets)have three forms: one direction S-rough sets,dual of one direction S-rough sets and two direction S-rough sets.
S-粗集具有三类形式:单向S-粗集,双向S-粗集,单向S-粗集对偶。
2.
By using the dual of one direction S-rough sets,a generation method of one direction S-dual rough decision law was presented and the concepts of upper decision law,lower decision law,one direction S-dual rough decision law kernel and one direction S-dual rough decision law band were proposed.
利用单向S-粗集对偶,给出单向S-对偶粗决策规律生成方法;给出上决策规律,下决策规律,单向S-对偶粗决策规律核,单向S-对偶粗决策规律带的概念。
4)  dual of one direction singular rough sets
单向S-粗集对偶
1.
By using dual of one direction singular rough sets, this paper proposes the concepts of f-interfere generation and f-interfere law generation of knowledge and F-interfere generation and F-interfere law generation of dual of one direction singular rough sets.
利用单向S-粗集对偶给出知识的f-干扰生成与f-干扰规律生成,单向S-粗集对偶的F-干扰生成与F-干扰规律生成的概念,基于这些概念提出了F-干扰盈余与F-干扰度关系定理、F-干扰盈余规律与F-干扰度规律关系定理、F-干扰分辨定理、F-干扰规律分辨定理,给出了F-干扰规律识别准则与应用。
2.
By using dual of one direction singular rough sets,this paper proposes the concepts of f- interfere generation and reduction of knowledge and F- interfere generation and reduction of dual of one direction singular rough sets.
利用单向S-粗集对偶(dual of one direction singular rough sets)给出了知识的f-干扰生成与还原,单向S-粗集对偶的F-干扰生成与还原的概念,在这些概念的基础上提出了F-干扰定理,F-干扰盈余定理,F-干扰分辨定理,干扰依赖还原定理,干扰依赖还原原理,给出F-干扰的应用。
5)  dual of function one direction S-rough sets
函数单向S-粗集对偶
1.
■-model generated by dual of function one direction S-rough sets
函数单向S-粗集对偶生成的■-模型
2.
Using dual of function one direction S-rough sets(Dual of function one direction singular rough sets),this paper presents the concepts of p-state,the distance of state,and the system state being randomly disturbed by p-law.
函数单向S-粗集对偶是函数S-粗集(function singular rough sets)的基本形式之一。
3.
Based on functions generated from the upper approximation and the lower approximation in dual of function one direction S-rough sets,the definition of rough area,and the definition of double rough integrals was given and there dynamic characteristics were pointed out.
以函数单向S-粗集对偶的上、下近似生成的函数为基础,提出了粗区域的定义,二重粗积分的定义及其动态特征,通过动态特征给出了扩张度和扩张率的概念,并且通过计算扩张度和扩张率来度量系统受干扰的程度。
6)  dual of founction one direction singular rough sets
单向函数S-粗集对偶
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条