说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 逐块光滑边界
1)  piecewise smooth boundary
逐块光滑边界
1.
The main purpose of this paper is to construct an abstract integral representation formula for smooth functions on bounded domains with piecewise smooth boundary in C~n.
为建立Cn 空间中具有逐块光滑边界的有界域上的一个抽象的积分公式。
2)  Piecewise c ̄(1)smooth boundary
逐块C~(1)光滑边界
3)  piecewise C~(1) boundary
逐块C(1)边界
4)  piecewise subsmooth manifold
逐块光滑流形
5)  non-smooth boundary
非光滑边界
1.
The new integral formula with weight factors for a strictly pseudoconvex polyhedron with non-smooth boundary;
具有非光滑边界强拟凸多面体带权因子的新积分公式
2.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
3.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
6)  piecewise smooth boundaries
分片光滑边界
1.
This paper gives the inner and outer limit value:Φ +(t)=(1-β(t)/S)φ(t)+∫ Ωφ(ζ)K(ζ,t) Φ -(t)=(-β(t)/S)φ(t)+∫ Ωφ(ζ)K(ζ,t)of the Cauchy_Fantappie type integral representation in domain DC n with piecewise smooth boundaries Ω are both belong to H(α,Ω), which generalizes a result by CHEN Shu_jin in 1994.
本文给出具分片光滑边界Ω的域D Cn 上的Cauchy_Fantappie型积分表示的内外极限值 :Φ+(t) =( 1 - β(t) /S) φ(t) + ∫Ωφ( ζ)K( ζ ,t)Φ-(t) =( - β(t) /S) φ(t) + ∫Ωφ( ζ)K( ζ ,t)属于H(α ,Ω) ,推广了陈叔谨先生 1 994年得到的一个结果 。
补充资料:犬逐块
【犬逐块】
 (譬喻)无知之人见果而不求因,如犬追块而不逐投之之人。淫槃经二十五曰:“一切凡夫,惟观于果,不观因缘,如犬逐块不逐于人。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条