1) piecewise smooth boundary
逐块光滑边界
1.
The main purpose of this paper is to construct an abstract integral representation formula for smooth functions on bounded domains with piecewise smooth boundary in C~n.
为建立Cn 空间中具有逐块光滑边界的有界域上的一个抽象的积分公式。
2) Piecewise c ̄(1)smooth boundary
逐块C~(1)光滑边界
3) piecewise C~(1) boundary
逐块C(1)边界
4) piecewise subsmooth manifold
逐块光滑流形
5) non-smooth boundary
非光滑边界
1.
The new integral formula with weight factors for a strictly pseudoconvex polyhedron with non-smooth boundary;
具有非光滑边界强拟凸多面体带权因子的新积分公式
2.
We obtain a continuous solution of -equation for a strictly pseudoconvex domain with non-smooth boundary on Stein manifolds,which doesn t involve integral on boundary.
利用Hermitian度量和陈联络,构造拓广的不变积分核,借助Stokes公式,探究Stein流形中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式及其-方程的连续解,其特点是不含边界积分,从而避免了边界积分的复杂估计,另外该拓广式的特点是含有可供选择的实参数m,m=2,3,…,P(P<+∞),适用范围更加广泛。
3.
By meams of ΓK manifolds introduced by Laurent-Thiebaut,et al,we constructed extend B-M(Bochner-Matinelli) kernel to study extension formula of Koppelman-Leray-Norguet formula and obtained a continuous solutions of -equation on a strictly pseudoconvex domain with non-smooth boundary in Cn space.
利用Laurent-Thiebaut等引进的ΓK流形,构造拓广的B-M(Bochner-Matinelli)新核,探究Cn空间中具有非光滑边界强拟凸域上Koppelman-Leray-Norguet公式的拓广式和-方程的连续解。
6) piecewise smooth boundaries
分片光滑边界
1.
This paper gives the inner and outer limit value:Φ +(t)=(1-β(t)/S)φ(t)+∫ Ωφ(ζ)K(ζ,t) Φ -(t)=(-β(t)/S)φ(t)+∫ Ωφ(ζ)K(ζ,t)of the Cauchy_Fantappie type integral representation in domain DC n with piecewise smooth boundaries Ω are both belong to H(α,Ω), which generalizes a result by CHEN Shu_jin in 1994.
本文给出具分片光滑边界Ω的域D Cn 上的Cauchy_Fantappie型积分表示的内外极限值 :Φ+(t) =( 1 - β(t) /S) φ(t) + ∫Ωφ( ζ)K( ζ ,t)Φ-(t) =( - β(t) /S) φ(t) + ∫Ωφ( ζ)K( ζ ,t)属于H(α ,Ω) ,推广了陈叔谨先生 1 994年得到的一个结果 。
补充资料:犬逐块
【犬逐块】
(譬喻)无知之人见果而不求因,如犬追块而不逐投之之人。淫槃经二十五曰:“一切凡夫,惟观于果,不观因缘,如犬逐块不逐于人。”
(譬喻)无知之人见果而不求因,如犬追块而不逐投之之人。淫槃经二十五曰:“一切凡夫,惟观于果,不观因缘,如犬逐块不逐于人。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条