1) two-mode entangled coherent-states cavity fields
纠缠相干态光场
1.
By means of time-evolution operator,we have studied the emission spectrum of a Λ-type three-level atom interacting resonantly with two-mode entangled coherent-states cavity fields.
采用时间演化算符方法,研究Λ-型三能级原子与纠缠相干态光场共振相互作用的辐射谱。
2) odd-even entangled coherent states cavity fields
奇偶纠缠相干态光场
1.
Emission spectrum of a Λ-type three-level atom with two-mode odd-even entangled coherent states cavity fields;
奇偶纠缠相干态光场驱动下Λ-型三能级原子的辐射谱
3) entangled coherent light fields
纠缠相干光场
1.
Considering two-mode entangled coherent light fields,one mode of the fields was poured into the cavity with a two-level atom and interacted with it by k photons non-resonantly.
考虑双模纠缠相干光场,将其中一束光注入一个存在二能级原子的腔中并与它们发生非共振κ光子相互作用,总系统在腔量子电动力学演化过程中,对原子作选择性的测量,通过操纵相互作用时间以及选择适当的光场参量,控制未参加相互作用光场的量子统计性质,在一定条件下可产生反聚束、压缩态等非经典光场,并改变其非经典效应的强弱。
4) entangled coherent states
纠缠相干态
1.
Preparation of entangled coherent states by a driven atom;
驱动单个原子制备纠缠相干态
2.
By suitably choosing the amplitude of the initial coherent states,we can obtain the maximum entangled coherent states.
通过适当设置初始相干态的振幅,该方案可以使转移后的纠缠相干态处于最大纠缠态。
3.
The authors of this paper propose an optical scheme for the generation of entangled coherent states which include the multi-mode and high-dimensional entangled coherent states.
在非线性克尔介质和光场的相互作用基础之上,提出了一个纠缠相干态(包括多模和高模纠缠)的光学实现方案。
5) entangled coherent state
纠缠相干态
1.
Teleportation of entangled coherent state through bipartite entangled quantum channels;
纠缠相干态的量子隐形传态
2.
Generation of Entangled Coherent States Based on Cavity QED;
基于腔QED的纠缠相干态的制备
3.
The triple-mode cavity field entangled coherent state can be prepared by using Jaynes-Cumminges model of interacted heavy detuning between single-mode cavity field and two-level atom.
利用单模腔场与二能级原子相互作用的大失谐Jaynes-Cumm inges模型,制备出三腔场纠缠相干态。
6) P-represention
相干纠缠态
补充资料:相干散射和非相干散射
再辐射的光量子频率和被吸收的光量子频率准确相等的散射过程称为相干散射。在相干散射的情况下,源函数准确地等于平均辐射强度。再辐射的光量子频率和被吸收的光量子频率不相等的散射过程称为非相干散射。在天体物理中,存在一系列因素使散射过程成为非相干散射。主要的因素是:原子的能级有一定的宽度、原子的热运动和湍动以及压力效应等。对于非相干散射,源函数是相当复杂的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条