1) square number
平方数
1.
In this paper,we study Diuphantion equation 2 a+2 b+2 c= x 2,and the sufficient and necessary condition for 2 a+2 b+2 c as square number is given.
借助于丢番图逼近中的一些深刻结果 ,得到了 2 a+2 b+2 c为平方数的充要条件 ,即求出了丢番图方程 2 a+2 b+2 c=x2 的全部非负整数解 ,并得到若干有用的推论 。
2.
In this paper, the author studies the condition for square numbers in a second order recursion sequence:L_0=0,L_1=1,L_(n+2)=2kL_(n+1)-L_n (n≥0)V_0=2,V_1=2k,V_(n+2)=2kV_(n+1)-V_n (n≥0)And some results are reached by solving several Diophantine equafions.
本文考虑二阶循环序列 L_0=0,L_1=1,L_(n+2)=2kL_(n+1)-L_n (n≥0) V_0=2,V_1=2k,V_(n+2)=2kV_(n+1)-V_n (n≥0)中存在平方数的条件,通过若干不定方程的研究得出若干结果。
2) square numbers
平方数
1.
All positive integers which make numbers with the form 1+25n(n+1)/2 to be square numbers were given by using the basic knowledge of the Pell equation in this paper.
利用Pell方程的基本性质找出了可使1+25n(n+1)/2为平方数的所有正整数n。
2.
This article the object studied is not only a triangular number,but also the square numbers "the triangle square numbers".
研究的对象为既是三角数,又是平方数的"三角平方数"。
3.
The problem of transforming k-angular numbers into square numbers is discussed.
讨论了把k角形数化为平方数问题,用Pell方程方法把k角形数化为平方数,例子说明了方法的正确性。
3) Square Integer
平方数
1.
Dual Consecutive Number is the Necessary and Sufficient Condition of a Square Integer;
二重连整数是平方数的充分必要条件
2.
Recurring decimal depicts positive integer solution of x and y in a indefinite equation of x2=(10k+1)y which first that square integer is a necessary and sufficient condition of consecutive number,and then shows all the dual consecutive number of a square integer,also denied the suspect of passage [1].
给出了平方数是二重连整数的一个充分必要条件,进而给出了所有是平方数的二重连整数;同时否定了文[1]的猜想。
4) square
[英][skweə(r)] [美][skwɛr]
平方数
1.
In this paper,all positive integers n which makes the form 1+9n(n+1)/2 to be a square was given.
找出了所有可使1+9n(n+1)/2是平方数的正整数n。
2.
An infinite product and its square are expanded to infinite series by residue theorem.
由此可以简单地证明表正整数为四个 ,八个平方数的 Jacobi定
6) square complement
平方补数
1.
Some asymptotic fomulas on square complements;
关于平方补数的一些渐近公式
2.
On the mean value of divisor function for square complements;
关于平方补数除数函数的均值
3.
The hybrid mean value of square complement and the sum of divisors function
平方补数与除数和函数的混合均值
补充资料:完全平方数之差
相临两个完全平方数之差可以组成一个等差数列:1,3,5,7,9,11.....所以已知两完全平方数之差,就可求出任意两个完全平方数之差.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条