说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 加W权Drazin逆
1)  weighted W Drazin inverse
加W权Drazin逆
1.
In the paper,some properties of matrix,and weighted W Drazin inverses along with their applications in matrix partial ordering theory are proposed.
给出了矩阵加W权Drazin逆的一些性质及其在矩阵偏序理论中的应用。
2)  W-weighted Drazin inverse
W-加权Drazin逆
1.
The sensitivity of the W-weighted Drazin inverse solution of the restricted matrix equation;
约束矩阵方程W-加权Drazin逆解的敏感性(英文)
2.
Then the following propositions are equivalent:(1) a has a w-weighted Drazin inverse a_(d,w) in ?;(2)λ_1:X→L_1 is cokernel of(aw)~i,k_1λ_1 and(aw)~(i+1)+λ_1(k_1λ_1)~(-1)k_1 are invertible;(3)λ_2:Y→L_2 is cokernel of (wa)~j,k_2λ_2 and(wa)~(j+1)+λ_2(k_2λ_2)~(-1)k_2 are invertible.
那么下列命题等价:(1)a在£中有w-加权Drazin逆a_(d,w);(2)λ_1:X→L_1是(aw)~i的上核,k_1λ_1和(aw)~(i+1)+λ_1(k_1λ_1)~(-1)k_1是可逆的; (3)λ_2:Y→L_2是(wa)~j的上核,k_2λ_2和(wa)~(j+1)+λ_2(k_2λ_2)~(-1)k_2是可逆的。
3)  weighted Drazin inverse
加权Drazin逆
1.
Notes on the product of weighted Drazin inverse;
加权Drazin逆乘积的注记
2.
The generalized Bott-Duffin inverse of L-zero matrices and weighted Drazin inverse matrices are discussed in this paper.
本文给出了L-零矩阵的广义Bott-Duffin逆及矩阵的加权Drazin逆的若干性质及表达形式。
3.
At the same time,a sufficient and necessary condition for the weighted Drazin inverse(A⊙B)d,I=(Bd,W2Ip)*Ad,W1 is given.
利用矩阵的秩方法,定义了矩阵右半张量积的加权Drazin逆的反序律(Bd,W2Ip)*Ad,W1=(Bd,W2Ip)W2W1Ad,W1,并且给出矩阵右半张量积加权Drazin逆(A⊙B)d,I=(Bd,W2Ip)*Ad,W1成立的充要条件。
4)  W-weighted Drazin inverse
加权Drazin逆
1.
Some results for the perturbation of the W-weighted Drazin inverse;
关于加权Drazin逆扰动的几个结果(英文)
2.
In this paper,we establish some new explicit representations of the W-weighted Drazin inverse A_(d,w)in terms of regular inverse.
给出了几个加权Drazin逆的显式表达式。
5)  weighted Drazin inverse
带W权的Drazin逆
1.
The Moore-Penrose inverse and the weighted Drazin inverse of block k-circulant matrices
块k-循环矩阵的Moore-Penrose逆和带W权的Drazin逆
6)  W-weighted Drazin inverse
W-Drazin逆
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条