1) second-order remained term
二阶余项
1.
It proves that the transport operator generates a strongly continuous semigroup and the weak compactness properties of the second-order remained term of the Dyson-Phillips expansion for the semigroup in space,and to obtain the spectrum of the transport operator only consist of,at most,finitely many isolated eigenvalues which have a finite a.
在L1空间上研究板几何中一类具反射边界条件下各向异性、连续能量、均匀介质的奇异迁移方程,证明了这类方程相应的奇异迁移算子产生C0半群的Dyson-Ph illips展开式的二阶余项R2(是弱紧的,从而得出了该迁移算子的谱在域Γ中仅由有限个具有限代数重数的离散本征值组成等结果。
2.
It proves the transport operator generates a C_0 group and the second-order remained term of the Dyson-Phillips expansion for the C_0 group is compact in L~p(1<p<∞) space and weakly compact in L~1 space,and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which have a finite algebra.
在Lp(1 p<∞)空间研究了板模型中具周期边界条件下各向异性、连续能量、均匀介质的迁移算子的谱,证明了:这类迁移算子产生C0群的Dyson—Phillips展开式的二阶余项在Lp(1
3.
It proves the transport operator generates a strongly continuous semigvoup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the semigvoup,and to obtain the spectrum of the transport operator only consist of finite isolated eigenvalue which have a finite algebraic multiplicity.
在Lp(l p<∞)空间研究了板几何中一类具完全反射边界条件下各向异性、连续能量、均匀介质的迁移算子的谱,证明了:这类迁移算子产生C0半群和该半群的Dyson—Phillips展开式的二阶余项在Lp(l
2) second-order remained
二阶余项
1.
It proves the transport operator generates a strongly continuous C0 semigroup and the compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C0 semigroup in Lp(1<p<∞) space,and to obtain the spectrum of the transport operator consist of isolate eigenvalues which have a finite algebraic multiplicity.
在Lp(1
二阶余项是紧的,从而该算子的谱在区域Γ中由具有限重的离散本征值组成等结果。
2.
It proves the singular transport operator generates a strongly continuous C_0 semigroup V(t)(t0)and the weak compactness properties of the second-order remained term of the Dyson-Phillips expansion for the C_0 semigroup V(t)(t0)in L1 space,and to obtain the spectrum of the singular transport operator only consist of,at.
证明了这类方程相应的奇异迁移算子产生C0半群和该半群的Dyson-Phillips展开式的二阶余项是弱紧的,从而得到了该迁移算子的谱在区域Γ中仅由至多有限个具有限代数重数的离散本征值组成等结果。
3) the second remainder
二阶余项
1.
The paper is concerned with the spectral properties of the transport operator general boundary conditions First we obtain that the second remainder of the semigroup generated by the transport operator second we obtain the spectral struction of the transport operator.
在LP(1 P<∞)空间研究了板模型中一类带广义边界条件具各向异性、连续能量、均匀介质迁移算子的谱,证明了该迁移算子生成C0半群的D yson—Ph illips展开式的二阶余项在LP(1
4) high-order remainder
高阶余项
5) binomial surplus
二项同余
1.
This article,based on Euler theorem and binomial surplus theory,explains the principles and methods of making under-communication and setting public key management systems on information network.
基于数论中的Euler定理和二项同余式 ,解读了在信息网络中进行秘密通信 ,建立公钥系统的原理和方
6) second order term
二阶项
1.
After analyzing power flow algorithms, a fast load flow algorithm based on algorithm including second order term is proposed .
在简要分析已有配电网潮流算法的基础上,提出了一种改进的带二阶项的快速潮流算法。
2.
The nonlinear adjustment theory with the second order term of expanded nonlinear function in consideration is a focus point.
顾及非线性函数的二阶泰勒展开项的非线性平差理论是当前理论界研究的一个热点 ,也是一个疑点 通过对顾及一阶泰勒项及顾及二阶泰项勒两种情形下的平差过程及其效果作了细致地对比 ,得出了“二阶项对一阶项平差无明显改善”及“顾及二阶项的平差方法的性价比不合理”的结论 ,指出测量平差的归属是建立非线性函数空间的平差与数据处理理论 图 1 ,表 3,参
补充资料:二项同余式
二项同余式
_ two-term congruence |?binomial congruence
二项同余式【two一term c0I嗯n把Ice或binolnja}c0llgnl-enc。;;,,Jleouoe epaane。。e],亦称于项回伞方攀,幂同余式(power collgrUellce) 形如 x”三a(mod爪)(l)的代数同余式,其中a,m是互素的整数,而n)2是自然数.如果同余式(l)是可解的,则称a为一个模m的n次幂剩余;否则,称a为模m的n次非剩余. 关于合数模m的二项同余式的可解性问题可以归结为素数模p的相应间题的研究(见同余式(c切lgnl-ence)).对于素数模的幂剩余问题,有一个Euler可解性准则:同余式 x”三a(nlodp)可解,必有 a(p一’)/占三l(mod尸),此处占是数n和p一1的最大公因数;当这一条件满足时,同余式恰有占个解. 由E田er准则立即可知在数1,…,p一l中恰有(尸一l)/占个模尸的n次幂剩余和(占一l)(尸一1)/占个非剩余. 复杂得多的是相反的问题:找出所有的模p使得给定的数a是n)2次剩余(或非剩余).Euler指出,同余式xZ三a(modp)的可解或不可解问题依赖于素数模p是否属于某些算术级数.C.F.Gauss于1801年第一个给出这一结果的严格证明(见14]和C加ss互反律(Gauss化ciprocity hw);二次互反律(q阳drdtie reciPIDcitylaw)).C透uss进一步注意到,对于n)3,问题的全部解决只有当有理整数环作某些扩张后才有可能.因此,在建立双二次剩余的互反律时,他致力于将有理整数环扩充至复整数环Z【11.对于给定的。‘z卜],双二次剩余x‘三功(modP)在环z〔i]中的可解或不可解依赖于数p对于环z【门中某些常数模D的剩余的值. H.M.B皿orPa八oB开创了研究二项同余式及其在其他理论问题中的应用的新阶段,他于1914年证明:在数1,…,Q(Q毛P一l)中,素数模p的二次剩余的个数R可由公式 ,一冬Q+。而玩v 2‘一vr一二给出,此处}引簇1.接着,B~pa及仍又得到了一个更加一般的问题的类似结果,即关于同余式 义”兰y(11x心P),n)2当y遍历一个不完全剩余系1毛y簇Q时的解的个数问题.‘种汪,在tAZ]中证明:对任意:>1/4石,素数模p的最小二次非剩余小于c(幻p’.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条