1) error-sum function
误差和函数
1.
In this paper,we consider the error-sum function of Engel-continued fraction.
本文研究了Engel展式误差和函数,运用数学分析方法,获得了误差和函数的连续性和界值定理,从而知道该函数的图像是一个分形图。
2.
In this paper, we introduce the error-sum function of decimal expansion.
研究了十进制误差和函数,利用分形几何的方法,得到了误差和函数的积分值,介值定理以及其图的Hausdorff维数。
3.
In this paper, we consider the error-sum function of Lüroth series expansion.
本文研究了L櫣roth展式的误差和函数。
2) error function
误差函数
1.
A study of decision feedback blind equalization algorithms based on different error functions;
基于不同误差函数的判决反馈水声信道盲均衡算法
2.
A structural damage identification method based on sensitivity analysis of modal parameter error function;
基于模态误差函数灵敏度分析的损伤识别方法
3.
Study on the methods for computing error function erf x;
误差函数计算方法的研究
3) error saturation prevention (ESP) function
误差饱和预防函数
4) error solution
误差函数解
1.
The concentration curves of iron and nickel interface in the deep drawing steel strip are measured by electron-probe and simulated by error solution of diffusion equation.
首先假设扩散系数与浓度无关,根据电子探针的实验结果,采用无限大扩散偶模型,使用扩散方程的误差函数解对实验结果进行拟合,获得铁镍的互扩散系数;然后考虑扩散系数与浓度有关的一般情况,与常规的玻耳兹曼 俣野法相区别,采用最小二乘法对实验数据进行拟合处理,得到元素浓度分布的曲线方程,从而求得与浓度有关的互扩散系数。
5) error function complement
余误差函数
1.
The definition of error function complement,the fixation process of laser printer and the corresponding defusion model are introduced.
介绍了余误差函数的定义,激光打印机的定影过程和与定影过程相对应的扩散模型,阐述了余误差函数的数值计算对设计激光打印机定影过程的重要性,并指出了已有文献给出的余误差函数的数值计算方法的局限性,在此基础上,分析了3种可行的数值计算方法:查表法、近似计算法和利用Excel中的工程函数直接计算法,并对每种方法进行了比较,最后确定了一种有效可行而且简洁的数值计算方法,解决了激光打印机定影中的实际问题,提高了工程设计效率。
6) complex error function
复误差函数
补充资料:应力函数和位移函数
在弹性力学中,为方便求解,常把应力或位移用几个任意的或某种特殊类型的函数表示,这些函数通常叫作应力函数或位移函数。
应力函数 最有名的应力函数是弹性力学平面问题中的艾里应力函数。如果没有体力,平面中的三个应力分量σxx、σyy、τxy满足下列方程:
。
(1)根据方程(1),可将应力分量用一个函数φ(x,y)表示为:
。
(2)φ便是艾里应力函数。对于均匀和各向同性的物体,φ是一个双调和函数,即它满足下列双调和方程:
ΔΔφ=0,
(3)式中是平面的拉普拉斯算符。引入φ后,平面问题原来的8个未知函数(两个位移分量、三个应变分量和三个应力分量σxx、σyy、τxy就归结为一个函数φ。这对求解具体问题很有好处。
在弹性柱体的扭转问题中,剪应力分量τxz、τyz满足下列平衡方程:
。
(4)据此可将τxz、τyz用一个函数Ψ(x,y)表示为:
。
(5)Ψ称为普朗特应力函数。对于均匀和各向同性的柱体,Ψ满足下列方程:
ΔΨ=-2Gθ,
(6)式中G为材料的剪切模量(见材料的力学性能);θ为单位长度的扭转角。
位移函数 在求解弹性力学的空间问题时,也可以用六个应力函数代替原来的六个应力分量,但好处不多。所以,一般多采用各种位移函数。对于均匀和各向同性弹性体,位移分量u1、u2、u3满足下列平衡方程:
式中是空间中的拉普拉斯算符;ν为材料的泊松比;G为剪切模量;┃i为体力分量。方程(7)的解可以表达成多种形式。一种形式为: 式中ψ1、ψ2、ψ3、嫓四个函数满足下列方程:
。 (9)函数ψ1、ψ2、ψ3、嫓称为布森涅斯克-帕普科维奇-纽勃位移函数。 弹性力学中许多空间问题的解都是从公式(8)推导出来的。
方程(7)还有另一种形式的解,即
式中Fi满足下列方程:
。
(11)函数F1、F2、F3称为布森涅斯克-索米利亚纳-伽辽金位移函数。对于回转体的轴对称问题,公式(10)可作许多简化。取对称轴为z轴(x3轴),记r为所考虑点到z轴的距离,并记位移在r、z轴上的投影分别为u、ω。若┃1=┃2=0,可取F1=F2=0,F3=F(r,z)。这样,由公式(10)可得到:
,
(12)式中,即柱坐标中的拉普拉斯算符;F满足下列方程:
。
(13)
公式(12)中的函数F称为乐甫位移函数。 在求解轴对称问题时,经常利用公式(12)。
在┃1=┃2=0的情况下,即使不是轴对称问题,方程(7)的解也可用一组位移函数F、┃表示如下:
式中F、┃满足下列方程:
, Δ┃=0。
(15)这组位移函数特别适用于求解无限体、半无限体和厚板等问题。
应力函数 最有名的应力函数是弹性力学平面问题中的艾里应力函数。如果没有体力,平面中的三个应力分量σxx、σyy、τxy满足下列方程:
。
(1)根据方程(1),可将应力分量用一个函数φ(x,y)表示为:
。
(2)φ便是艾里应力函数。对于均匀和各向同性的物体,φ是一个双调和函数,即它满足下列双调和方程:
ΔΔφ=0,
(3)式中是平面的拉普拉斯算符。引入φ后,平面问题原来的8个未知函数(两个位移分量、三个应变分量和三个应力分量σxx、σyy、τxy就归结为一个函数φ。这对求解具体问题很有好处。
在弹性柱体的扭转问题中,剪应力分量τxz、τyz满足下列平衡方程:
。
(4)据此可将τxz、τyz用一个函数Ψ(x,y)表示为:
。
(5)Ψ称为普朗特应力函数。对于均匀和各向同性的柱体,Ψ满足下列方程:
ΔΨ=-2Gθ,
(6)式中G为材料的剪切模量(见材料的力学性能);θ为单位长度的扭转角。
位移函数 在求解弹性力学的空间问题时,也可以用六个应力函数代替原来的六个应力分量,但好处不多。所以,一般多采用各种位移函数。对于均匀和各向同性弹性体,位移分量u1、u2、u3满足下列平衡方程:
式中是空间中的拉普拉斯算符;ν为材料的泊松比;G为剪切模量;┃i为体力分量。方程(7)的解可以表达成多种形式。一种形式为: 式中ψ1、ψ2、ψ3、嫓四个函数满足下列方程:
。 (9)函数ψ1、ψ2、ψ3、嫓称为布森涅斯克-帕普科维奇-纽勃位移函数。 弹性力学中许多空间问题的解都是从公式(8)推导出来的。
方程(7)还有另一种形式的解,即
式中Fi满足下列方程:
。
(11)函数F1、F2、F3称为布森涅斯克-索米利亚纳-伽辽金位移函数。对于回转体的轴对称问题,公式(10)可作许多简化。取对称轴为z轴(x3轴),记r为所考虑点到z轴的距离,并记位移在r、z轴上的投影分别为u、ω。若┃1=┃2=0,可取F1=F2=0,F3=F(r,z)。这样,由公式(10)可得到:
,
(12)式中,即柱坐标中的拉普拉斯算符;F满足下列方程:
。
(13)
公式(12)中的函数F称为乐甫位移函数。 在求解轴对称问题时,经常利用公式(12)。
在┃1=┃2=0的情况下,即使不是轴对称问题,方程(7)的解也可用一组位移函数F、┃表示如下:
式中F、┃满足下列方程:
, Δ┃=0。
(15)这组位移函数特别适用于求解无限体、半无限体和厚板等问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条