说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 射影平坦芬斯勒度量
1)  projectively flat Finsler metric
射影平坦芬斯勒度量
2)  Finsler metric
芬斯勒度量
1.
Let(M,F) be an n-dimensional Finsler manifold(n≥3),using Finsler geometric basic knowledge and methods,it is obtained that reversible Finsler metric F is of many good curvature propertoes.
在n(n≥3)维芬斯勒流形(M,F)上,利用芬斯勒几何的基础知识和基本方法得到了对称芬斯勒度量F(reversible Finslermetric)具有若干很好的曲率性质;并进一步证明了对称(α,β)-度量F=αφ(s)具有相对迷向平均Landsberg曲率的充分必要条件是F为黎曼度量或Berwald度量,拓展了沈忠民等人的结果。
2.
In this paper, we study some important properities of Finsler metrics of scalar flag curvature.
本文研究了具有标量旗曲率的芬斯勒度量的若干重要性质。
3.
Moreover, this paper considers some properties of S-curvature of the Finsler metric F = eτ( x)(α+β).
然后,本文考虑了芬斯勒度量F=eτ(x)(α+β)的S-曲率的性质,证明了F具有迷向S-曲率当且仅当它具有迷向平均Berwald曲率。
3)  projectively flat metric
射影平坦度量
1.
The projectively flat metric is important not only in Riemannian Geometry but also in Finsler Geometry.
射影平坦度量不仅是黎曼几何中很重要的一类,也是F insler几何中主要讨论的对象。
4)  Projectively Flat Finsler Metrics
射影平坦Finsler度量
5)  projectively flat
射影平坦
1.
The constant curvature properties,space characteristics and generator properties of Quasi-Einsteinian manifolds of projectively flat in the Finsler space are given.
给出了Finsler空间中拟Einstein流形在射影平坦下的常曲率性质、空间特点、生成元性质,同时研究了生成元对度量以及Ricci射影平坦性质的影响。
2.
The authors completely classify projectively flat(α,β)-metrics F=(α+β)~((λ+1))/α~λ with constant flag curvature,where λ are the real numbers.
完全分类了射影平坦且具有常曲率的(α,β)度量F=(α+β)λ+1αλ。
3.
Then they focus on a projectively flat Finsler spaces, find a sufficient condition for it to be of constant curvature.
文章后半部分探讨了射影平坦的芬斯勒空间,得到它成为常曲率空间的一个条件。
6)  quasi projectivized Finsler tensor
拟射影化芬斯拉张量
1.
Then the concept of quasi projectivized Finsler tensor and a new definition of Finsler metric and Finsler space were introduced.
构造了以微分流形的拟射影化切丛为底空间的主丛拟射影化芬斯拉 ( Finsler)丛 ,由此引进拟射影化芬斯拉张量场的概念及芬斯拉度量和芬斯拉空间的一个新定义 。
补充资料:度量的射影定义


度量的射影定义
protective determination of a metric

  为了在n维射影空间P中得到度量的EuClid定义,应该在这个空间中找出一个(n一l)维超平面二,称为理想超平面(记份1llyl咒rplane),并且在这个超平面内建立一个点与(n一2)维超平面的椭圆极对应n(即一个极对应,在它之下没有点属于它所对应的(,,一2)维平面). 假设E。是移去一个理想超平面后得到的射影空问尸的一个子集;并且令X,Y,X‘,Y‘是E。中的点.称两线段XY与x‘Y’是合同的(cong旧enl),如果存在一个射影变换职将点X与Y分别变到X‘与y‘,并且保持配极(Po】arity)n不变. 这样定义的线段合同的概念允许在E。内引入Eue加空问的一个度量.为此,在射影空间尸内引人一个具有基单形OA,…A。的射影坐标(proJ。改j说coordinut留)系,这里点O不属于理想超平面兀而点A.,·…A.属于它,假设在这个坐标系里点o有坐标0.二,O,1,并且点A(i二l,二,n)有坐标 x一0,…,戈_:二0,x一1,x*,=O,…,x。*、二O,则在超平面二内定义的椭圆极对应n能够写为 “,一,乙“。、,‘一‘,…,。.这个对应的矩阵(“,,)是对称的,并一且对应于它的二次型 Q(、」,…,戈)二艺ai,xxj__星正定的一竺令--一---—--一一—一— X二(a!二…:“,十l)与y二(b!:’二:b。十,)是E。中的两个点(即a。+、笋O,b。十】笋0).可置 a“_ —=X…’—=X_二 a_二,a_。、 b,b_ 、_-王一-~yl,’.‘,不丁一一二夕。, b*:了‘”b。*、那么点X与Y之间的距离p用 户(X,Y)二VQ(x,一y,,一,X。一夕。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条