1) non-empty closed and convex subset
非空闭凸集
2) nonempty closed set
非空闭集
3) nonempty closed subset
非空闭子集
4) weakly closed convex set
弱闭凸集
5) closed convex subset
闭凸子集
1.
Let X be a uniformly convex Banach space, E a closed convex subset of X and let T be self map on E.
又若X是一致凸的Banach空间,E是X的闭凸子集,T:E→E为自映射,对任意x0∈E,定义序列xn+1=(1-cn)xn+cnTxn,则迭代序列{xn}n∞=1若收敛于p,则p∈F(T)。
6) closed convex set
闭凸集
1.
Then,three equivalent theorems of continuous parameter set valued submartingale is proved:(1)L 1 wkc (X) valued submartingale is equal to ∫ ΩF τ 1 d p∫ ΩF τ 2 d p for any τ 1,τ 2∈T and τ 1<τ 2;(2)L 1 fc (X) valued submartingale is equal to S 1 F s (F s)cl{E(g/F s);g∈S 1 F t (F t)} for any s,t∈R + and s<t;(3)When X is separable,closed convex set valued subm.
继而证明了连续参数集值下鞅的三个等价定理:(a)L1wkc(X)值下鞅等价于任给τ1<τ2,τ1,τ2∈T,∫ΩFτ1dP∫ΩFτ2dP;(b)L1fc(X)值下鞅等价于任给s,t∈R+,s<t,S1Fs(Fs)cl{E(g|Fs),g∈S1Ft(Ft)};(c)X可分时,闭凸集值下鞅等价于任给s,t∈R+,s<t,A∈Fs,cl∫AFsdPcl∫AFtdP。
2.
Some important properties of multifacility location models are to be dealt with, and an optimality condition for multifacility location problem on a closed convex set is put forward.
主要讨论多场址模型的性质,并给出了闭凸集上多场址问题的最优性条件。
补充资料:非有非空
【非有非空】
(术语)唯识论所说之中道也。一切诸法有偏计所执性(凡夫迷悟所现之虚妄相也,如于绳见蛇),与依他起性(因缘所生之法也,如绳之相),及圆成实性(诸法之实性即真如也,如绳之麻)之三性。此三性,偏计为空而非有,故为非有,依他圆成为有而非空,故为非空。要之心外之法(偏计)为非有,而心内之法(依他圆成)为非空也,非有非空,即中道也,是唯识论所明中道之意。
(术语)唯识论所说之中道也。一切诸法有偏计所执性(凡夫迷悟所现之虚妄相也,如于绳见蛇),与依他起性(因缘所生之法也,如绳之相),及圆成实性(诸法之实性即真如也,如绳之麻)之三性。此三性,偏计为空而非有,故为非有,依他圆成为有而非空,故为非空。要之心外之法(偏计)为非有,而心内之法(依他圆成)为非空也,非有非空,即中道也,是唯识论所明中道之意。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条