1) carrier capturing
载流子俘获
2) direct carrier trapping
直接载流子俘获
1.
Comparing the e- lectroluminescence (EL)with photoluminescence (PL) spectra of three materials and using F(?)rster energy transfer and direct carrier trapping theory,the dopant type is discussed.
采用对主体材料8-hydroxyquinoline aluminum(Alq_3)掺杂的方法,通过对3种小分子荧光染料Dimeth- ylquinacridone(DMQA)、4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)、5,6,11,12-tetraphenylnaphthacene(Rubrene)的研究,比较了其光致发光光谱和吸收光谱,利用F(?)rster能量传递(ET)理论和直接载流子俘获(DCT)理论对这3种材料作为掺杂染料的类型进行了讨论。
2.
The Frster energy transfer(ET),direct carrier trapping(DCT)theory and electroluminescence(EL)spectra of the devices were used to discuss the type of the three dyes as the dopant.
利用Fo¨rster能量传递(ET)理论和直接载流子俘获(DCT)理论,结合器件的电致发光(EL)光谱,讨论了这3种材料作为掺杂染料的类型。
3) carrier capture time
载流子俘获时间
4) carrier trapping effects
载流子俘获效应
5) carrier trapping
载流子陷阱俘获
6) minority-carrier trapping
少数载流子俘获
补充资料:电子俘获
一般分成两类。一类是原子或离子通过媒质时获得电子的机制。这是原子和离子在媒质中损失动能并减速的重要原因,从而影响入射的原子和离子在媒质中的射程。当入射的带电粒子的速度和媒质中电子的速度具有相同量级时,发生电子俘获的几率较大,因此在粒子射程的末端,电子俘获的发生较为频繁。对于带有大量正电荷的裂变碎片,则在它整个减速过程中都有电子俘获发生。中性的氢原子通过轻元素组成的媒质时,单位距离路程的能量损失约为质子在同样情形下能量损失的一半。
另一类是电子被原子核俘获,称为电子的核俘获或K俘获。K俘获是原子核从最靠近它的 K电子壳层俘获一个电子而转变为核电荷数比原来的值小 1的新核的机制,此过程中,核还要发射一个中微子。K俘获是β衰变的逆过程。发生K俘获的几率与K壳层电子处于核附近的寿命有关,核电荷数Z值较大的核,电子波函数在核中心区的值也较大,因而发生K俘获的几率也比轻核大。K俘获是电子的场与核场间相互作用的结果。
还可能发生一种二阶过程,即原子K壳层的s电子被核俘获的同时,伴随着L壳层一个p电子跃迁到K壳层而产生γ跃迁。
另一类是电子被原子核俘获,称为电子的核俘获或K俘获。K俘获是原子核从最靠近它的 K电子壳层俘获一个电子而转变为核电荷数比原来的值小 1的新核的机制,此过程中,核还要发射一个中微子。K俘获是β衰变的逆过程。发生K俘获的几率与K壳层电子处于核附近的寿命有关,核电荷数Z值较大的核,电子波函数在核中心区的值也较大,因而发生K俘获的几率也比轻核大。K俘获是电子的场与核场间相互作用的结果。
还可能发生一种二阶过程,即原子K壳层的s电子被核俘获的同时,伴随着L壳层一个p电子跃迁到K壳层而产生γ跃迁。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条