1) dynamic region of groundwater
地下水动态分区
3) groundwater province
地下水分区
4) dynamic state of groundwater
地下水动态
1.
on the basis of analyzing all-round the present situation and the existing problems of monitoring system for dynamic state of groundwater in Jilin Province,by the comparison and analysis among abroad and domestic monitoring systems for dynamic state of groundwater,the authors put forward planning scheme of monitoring system for dynamic state of groundwater in Jinlin Province in this paper .
本文在全面分析了吉林省地下水动态监测体系现状以及存在的问题的基础上,通过国内外地下水动态监测体系的对比分析,提出了吉林省地下水监测体系规划方案。
5) groundwater dynamics
地下水动态
1.
Study Of The Mid-deep Groundwater Dynamics In Zhengzhou City
郑州市中深层地下水动态浅析
2.
Based on analyses of groundwater level and water quality from 1963 to 2005,the groundwater dynamics of the water-filled aquifers in Feicheng colliery was studied.
分析了1963~2005年肥城矿区40多年的水位和水质数据,研究了该地区充水含水层地下水动态规律。
6) groundwater regime
地下水动态
1.
Application of LM arithmetic in groundwater regime forecast;
LM算法在地下水动态预测中的应用研究
2.
Utilizing BP neural network to forecast groundwater regime;
用BP神经网络预测地下水动态
3.
This paper is to classify the groundwater regime according to projection function value through turning multi-dimensional data indexes into low-dimensional space by using projection pursuit cluster (PPC) model, and meanwhile optimizing its projection direction by immune evolutionary algorithm (IEA).
针对地下水动态分类问题,采用投影寻踪聚类(PPC)模型,将多维的动态水位数据指标转换到低维子空间,并利用免疫进化算法(IEA)优化其投影方向,根据投影函数值的大小对地下水动态进行合理的分类。
补充资料:地下水动态
在自然和人为因素影响下,地下水水位、水量、水质、水温等随时间的变化(见图)。研究得比较多的是潜水水位变化,它实际上反映了潜水含水层水量收入(补给)与支出(排泄)之间的关系。
影响因素 气候是影响潜水动态最活跃的因素。雨季,降水入渗补给使潜水位上升,潜水矿化度降低;雨季过后,蒸发和径流排泄使潜水位逐渐下降,在翌年雨季前出现谷值,潜水矿化度升高。这种一年中周而复始的变化,称为季节变化。气候的多年变化,则使潜水位发生相应的多年周期性起伏。
地表水体附近,地下水动态受地表水的明显影响。河水位上升时,近岸处的潜水位上升最快,上升幅度最大;远离河岸,潜水位变化幅度变小,反应时间滞后。
气候水文因素决定了地下水动态的基本模式,而地质因素则影响其变化幅度与变化速度。例如,承压含水层受到上覆隔水层的限制,补给区动态变化强烈而迅速,远离补给区则变得微弱而滞后。对于潜水,包气带厚度越大,滞留于包气带中的水便越多,潜水位的变化越滞后于降水。
人为因素也可影响地下水的天然动态。例如,打井取水后,天然排泄量的一部或全部转由采水井排出,如采水量超过补给量,地下水位则逐年下降。再如,利用地表水大水漫灌而不加强排水,潜水位将因灌水入渗补给而逐年上升,引起土壤次生沼泽化或盐渍化。
研究地下水动态有助于解决一系列理论和实际问题。分析地下水动态可以帮助查明补给来源,查明含水层之间或含水层与地表水体之间的联系情况。确定供水井的深度时,需要了解最低水位,以保证干旱季节和干旱年份的水量供应。计算地下水资源,必须具备一定年限的地下水动态观测资料。监测人为活动影响下的地下水动态,可以及早发现不利变化(如咸水入侵淡含水层,地下水污染),不失时机地采取措施。地震前地应力的变化会引起地下水位乃至水质异常变化。因此,观测地下水动态可作为预报地震的一种辅助手段。监测地下水动态,需要布置有代表性的钻孔、水井、泉等,组成控制性地下水动态观测网。
地下水均衡 某一地区某一时间段内,地下水水量、盐量等的收入与支出的数量关系。它与地下水动态密切相关。进行均衡研究所选定的地区,称为均衡区。进行均衡研究的时间段,称为均衡期。在某一均衡区的某一均衡期内,地下水水量(或盐量)的收入大于支出,则表现为储存量增加,称为正均衡;支出大于收入,储存量减少,称为负均衡。从多年统计角度,气象要素趋于某一平均值。因此,天然条件下地下水储存量也趋于某一定值,即多年中不增不减。但在较短的时间内,气候要素的波动则使地下水经常处于不平衡状态,地下水量以及相应的水位、水质等随时间发生变化,可见,地下水动态是地下水均衡的外部表现。
研究均衡时,分析地下水均衡的收入项与支出项,列出均衡方程式;通过测定各已知项,求算未知项。天然状态下潜水(量)均衡方程式的一般形式为
式中、为上(下)游潜水流入(出)量;Xf、Yf为降水(地表水)渗入补给量;Qt为越流补给量(取正值)或越流排泄量(取负值);Qd为潜水以泉或泄流形式向地表排泄量;Zc为水汽凝结补给潜水量;Zu为潜水面及其邻接毛管水带的蒸发量(包括土面蒸发及植物散发);μΔH为均衡期始末潜水储存量的变化,其中μ为给水度,ΔH为均衡期始末潜水位变化值,上升取正值,下降取负值。在不同的自然条件下,式中各均衡要素所占的比重是不同的。
此外,还可以列出潜水盐量均衡方程式或潜水热量均衡方程式,以研究其盐均衡或热均衡。
参考书目
王大纯等编著:《水文地质学基础》,地质出版社,北京,1980。
R.H.Brown,A.A.Konoplyantsev,J.Ineson,V.S.Kava-levsky,Groundwater Studies,UNESCO,Paris,1972.
影响因素 气候是影响潜水动态最活跃的因素。雨季,降水入渗补给使潜水位上升,潜水矿化度降低;雨季过后,蒸发和径流排泄使潜水位逐渐下降,在翌年雨季前出现谷值,潜水矿化度升高。这种一年中周而复始的变化,称为季节变化。气候的多年变化,则使潜水位发生相应的多年周期性起伏。
地表水体附近,地下水动态受地表水的明显影响。河水位上升时,近岸处的潜水位上升最快,上升幅度最大;远离河岸,潜水位变化幅度变小,反应时间滞后。
气候水文因素决定了地下水动态的基本模式,而地质因素则影响其变化幅度与变化速度。例如,承压含水层受到上覆隔水层的限制,补给区动态变化强烈而迅速,远离补给区则变得微弱而滞后。对于潜水,包气带厚度越大,滞留于包气带中的水便越多,潜水位的变化越滞后于降水。
人为因素也可影响地下水的天然动态。例如,打井取水后,天然排泄量的一部或全部转由采水井排出,如采水量超过补给量,地下水位则逐年下降。再如,利用地表水大水漫灌而不加强排水,潜水位将因灌水入渗补给而逐年上升,引起土壤次生沼泽化或盐渍化。
研究地下水动态有助于解决一系列理论和实际问题。分析地下水动态可以帮助查明补给来源,查明含水层之间或含水层与地表水体之间的联系情况。确定供水井的深度时,需要了解最低水位,以保证干旱季节和干旱年份的水量供应。计算地下水资源,必须具备一定年限的地下水动态观测资料。监测人为活动影响下的地下水动态,可以及早发现不利变化(如咸水入侵淡含水层,地下水污染),不失时机地采取措施。地震前地应力的变化会引起地下水位乃至水质异常变化。因此,观测地下水动态可作为预报地震的一种辅助手段。监测地下水动态,需要布置有代表性的钻孔、水井、泉等,组成控制性地下水动态观测网。
地下水均衡 某一地区某一时间段内,地下水水量、盐量等的收入与支出的数量关系。它与地下水动态密切相关。进行均衡研究所选定的地区,称为均衡区。进行均衡研究的时间段,称为均衡期。在某一均衡区的某一均衡期内,地下水水量(或盐量)的收入大于支出,则表现为储存量增加,称为正均衡;支出大于收入,储存量减少,称为负均衡。从多年统计角度,气象要素趋于某一平均值。因此,天然条件下地下水储存量也趋于某一定值,即多年中不增不减。但在较短的时间内,气候要素的波动则使地下水经常处于不平衡状态,地下水量以及相应的水位、水质等随时间发生变化,可见,地下水动态是地下水均衡的外部表现。
研究均衡时,分析地下水均衡的收入项与支出项,列出均衡方程式;通过测定各已知项,求算未知项。天然状态下潜水(量)均衡方程式的一般形式为
式中、为上(下)游潜水流入(出)量;Xf、Yf为降水(地表水)渗入补给量;Qt为越流补给量(取正值)或越流排泄量(取负值);Qd为潜水以泉或泄流形式向地表排泄量;Zc为水汽凝结补给潜水量;Zu为潜水面及其邻接毛管水带的蒸发量(包括土面蒸发及植物散发);μΔH为均衡期始末潜水储存量的变化,其中μ为给水度,ΔH为均衡期始末潜水位变化值,上升取正值,下降取负值。在不同的自然条件下,式中各均衡要素所占的比重是不同的。
此外,还可以列出潜水盐量均衡方程式或潜水热量均衡方程式,以研究其盐均衡或热均衡。
参考书目
王大纯等编著:《水文地质学基础》,地质出版社,北京,1980。
R.H.Brown,A.A.Konoplyantsev,J.Ineson,V.S.Kava-levsky,Groundwater Studies,UNESCO,Paris,1972.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条