1) unsaturated flow theory
非饱和渗流理论
1.
Dynamic predictive model based on unsaturated flow theory was built through combination of infinite slope stability analysis model and Iverson transient rainfall infiltration model.
结合无限斜坡稳定性分析模型与Iverson瞬时降雨入渗理论,分析建立起基于非饱和渗流理论的预警模型,并以我国南方典型地区为例进行模型试验。
2) Infiltrated theory of the saturated and unsaturated soil
饱和-非饱和入渗理论
3) saturated-unsaturated seepage
饱和-非饱和渗流
1.
Research on simulation of steady saturated-unsaturated seepage based on water-air two-phase flow theory;
基于水气二相流的稳定饱和-非饱和渗流模拟研究
2.
Program development for 3D FEM of coupling saturated-unsaturated seepage, temperature and stress;
考虑饱和-非饱和渗流、温度和应力耦合的三维有限元程序研制
3.
Development of the 3D finite element method of strength reduction considering the coupling of saturated-unsaturated seepage and stress;
考虑饱和-非饱和渗流场和应力场耦合的三维强度折减有限元程序研制
4) unsaturated-saturated seepage
非饱和-饱和渗流
1.
Then unsaturated-saturated seepage analyses were carried out to investigate the movement of water in a landfill element,in which the existence of intermediate covers and the efficiency .
结合苏州七子山垃圾填埋场的工程项目,通过室内试验量测垃圾饱和渗透系数和土-水特征曲线,推导其渗透性函数,考虑存在中间覆盖层和截洪沟失效的情况,通过对垃圾填埋体中非饱和-饱和渗流分析,研究填埋单元内的水分运移规律以及中间覆盖层上局部滞水的形成规律。
5) saturated-unsaturated seepage
饱和非饱和渗流
1.
Numerical analysis of saturated-unsaturated seepage problem of rock slope under rainfall infiltration;
降雨入渗条件下边坡岩体饱和非饱和渗流计算
6) saturated-unsaturated seepage flow
饱和非饱和渗流
1.
In the light of high density fractured rock mass, which can be equivalent to continuum, a mathematical model for saturated-unsaturated seepage flow in fractured rock mass due to surface infiltration is established in this paper.
针对裂隙高度发育的岩体 ,把裂隙岩体等效为连续介质来处理 ,建立了考虑地表入渗的裂隙岩体饱和非饱和渗流数学模型。
补充资料:非饱水土渗流
在孔隙未被水分充满(未达到饱和)的土壤中水的流动。农田土壤中水分的运动,在灌溉、排水、降雨和蒸发影响下地下水面以上土层(包气带)中水分的运动都属于非饱水土中的渗流。
土壤水在势能的作用下流动。非饱和土壤水的势能包括重力势、压力势(土壤负压或称毛管张力)等。垂直一维非饱水土壤渗流速度v,根据达西渗流定律可写成:
式中嗞为非饱水土中的总位势(以水头计);z为自基准面向上的垂直坐标值;h为土壤水的压力水头(负压);K(θ)为非饱水土壤的渗透系数(或称水力传导度),是含水率θ的函数。
根据质量守恒原则,可求得以θ和h为变量的两个一维垂向渗流微分方程:
(1)
(2)式中为非饱水土的扩散度;为非饱水土的容水度;t为时间变量。
对少数具有简单初始和边界条件的问题,通过求解式(1)和(2),可得解析解。但对于复杂的非饱水土中渗流问题需通过数值计算法求解,从而可预测分析土壤中含水率分布和变化情况。
参考书目
J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York,1972.
土壤水在势能的作用下流动。非饱和土壤水的势能包括重力势、压力势(土壤负压或称毛管张力)等。垂直一维非饱水土壤渗流速度v,根据达西渗流定律可写成:
式中嗞为非饱水土中的总位势(以水头计);z为自基准面向上的垂直坐标值;h为土壤水的压力水头(负压);K(θ)为非饱水土壤的渗透系数(或称水力传导度),是含水率θ的函数。
根据质量守恒原则,可求得以θ和h为变量的两个一维垂向渗流微分方程:
(1)
(2)式中为非饱水土的扩散度;为非饱水土的容水度;t为时间变量。
对少数具有简单初始和边界条件的问题,通过求解式(1)和(2),可得解析解。但对于复杂的非饱水土中渗流问题需通过数值计算法求解,从而可预测分析土壤中含水率分布和变化情况。
参考书目
J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York,1972.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条