1) fuzzy linear order homomorphism
模糊线性序同态
2) L-fuzzy linear order-homomorphism
L-模糊线性序同态
1.
The main contents involve the L-topological structure of L-fuzzy normed linear space and its basic properties, the completion of L-fuzzy normed linear space, the boundedness of L-fuzzy sets and L-fuzzy linear order-homomorphisms and the space ofφ-variable basis powerset bounded linear operators.
主要内容包括:L-模糊赋范线性空间的L-拓扑结构及基本性质;L-模糊赋范线性空间的完备化;L-模糊集和L-模糊线性序同态的有界性,以及φ-变基幂集有界线性算子空间。
3) fuzzy linear ordering
模糊线性序
4) linear order homomorphism
线性序同态
1.
The definitions of linear order homomorphisms and LF linear operators are introducted,and it is proved that the LF linear operator is pointwise depiction of the linear order homomorphism.
给出了线性序同态与LF线性算子的定义并得到了其结构刻划表示定理,证明了LF线性算子是线性序同态的点式刻划。
5) fuzzy homomorphism
模糊同态
1.
Fuzzy Homomorphism of Groups and Isomorphism Theorems of Fuzzy Quotient Groups;
群的模糊同态与模糊商群的同构定理
2.
Fuzzy homomorphism and fundamental theorem of fuzzy homomorphism;
模糊同态与模糊同态基本定理
3.
The fuzzy mapping is given based on the concept of fuzzy equivalent,and fuzzy homomorphism of groups and characteristics in this mapping state are discussed.
利用模糊相等关系下的模糊映射,讨论了在此映射下群的模糊同态及其有关性质。
6) L _fuzzy linear order_homomorphism
L-fuzzy线性序同态
补充资料:半序线性空间
一类赋有序关系的线性空间,称为有序线性空间。
如果只考察实值函数,则重要的空间如C(Ω),Lp(Ω)(1≤p<∞),除了有线性结构、拓扑结构以外,还有个按照自然的序:
??≥0,若??(t)≥0对一切(几乎所有)t∈Ω都成立,构成的序结构。某些空间中的这种序或"正性",在理论和应用上都是很重要的。
半序空间与向量格 如果实线性空间E的某些元素偶(x,y)之间有关系x≥y,并存在①序关系;x≥x,又 x≥y 且 ,x≥y 且 ;②,x≥y,;则称E为半序线性空间。若进而还有③格关系:对x、y∈E恒有z∈E,使x≤z且y≤z,又x≤u,。就称E为向量格或里斯空间,且记③中之z为x∨y。
一般对具有性质①的集合,称为按关系≥是半序的,而上述性质②则意在线性结构与序结构的协调。
向量格实例 ①设CR(Ω)是紧豪斯多夫空间Ω上全体实值连续函数,其上的加法与数乘如通常定义。对 x、y∈C(Ω)定义,当t∈Ω。这时(x∨y)(t)=max{x(t),y(t)},易见 CR(Ω)是向量格。②设(x,B)是可测空间。设V是全体在(x,B)上有限的,完全可加的集合函数。对μ1,μ2∈V 及实数α定义,E∈B; ,E∈B,α是实的;,E∈B。这时,
当E∈B。可以证明,V是向量格。③对希尔伯特空间H上有界线性算子A与B,如果对任何有界的T使AT=TA皆有BT=TB,则称B堻堻A。设 A是H上给定的有界自伴算子,令RA={H;BA},定义,当x∈H,则对有。这里而且C≥0,可以证明RA是向量格。
向量格的性质 在向量格中定义 ,x_=(-x)∨0,|x|=x∨(-x)依次称为x的正部分、负部分、绝对值。在向量格中,每个元x都有若尔当分解。这是有界变差函数以及抽象测度论中的结果的推广。
对向量格E中的一族元素,若有x∈E,使得x≥xα对一切α∈A成立,又任何y≥yα对一切,则称x为之上确界,记作。同样,可定义下确界在一般的向量格中,上方有界的点列未必有上确界。如果对Χ之任何上方有界点列,必有上确界,则称Χ 为σ-完备的。前述之向量格V与RA都是σ-完备的。
对E中的点列,若有单调递减的点列wn使得,而,则称xn序收敛于x0,记作。
设Χ为实的巴拿赫空间。如果Χ还是一个向量格,而且
,则称Χ为巴拿赫格。这是线性关系,格序关系以及范数的结合。
利用格序关系与序收敛,对σ-完备的向量格 Χ可定义绝对连续元素与奇异元素,从而将拉东-尼科迪姆定理推广成:Χ的每个元都可惟一地表示成绝对连续元与奇异元的和。又对某些σ-完备向量格中之元α,可惟一地确定一个单位分解{eλ;-∞<λ<∞},使,从而将自伴算子谱分解定理推广到适当的 σ- 完备向量格上。设Χ为巴拿赫格,如果还有x≥0,,则称Χ为抽象L1空间。可以证明有测度空间Ω使得这种Χ线性的,保范序同构于L(Ω),同样也可用格序关系与范数刻画Lp(Ω)与C(K),这里K是紧空间。
参考书目
关肇直编:《泛函分析讲义》,高等教育出版社,北京,1958。
A.C.Zaanen and W.A.J.Luxemburg,Riesz Spaces,North-Holland, Amsterdam,1971.
如果只考察实值函数,则重要的空间如C(Ω),Lp(Ω)(1≤p<∞),除了有线性结构、拓扑结构以外,还有个按照自然的序:
??≥0,若??(t)≥0对一切(几乎所有)t∈Ω都成立,构成的序结构。某些空间中的这种序或"正性",在理论和应用上都是很重要的。
半序空间与向量格 如果实线性空间E的某些元素偶(x,y)之间有关系x≥y,并存在①序关系;x≥x,又 x≥y 且 ,x≥y 且 ;②,x≥y,;则称E为半序线性空间。若进而还有③格关系:对x、y∈E恒有z∈E,使x≤z且y≤z,又x≤u,。就称E为向量格或里斯空间,且记③中之z为x∨y。
一般对具有性质①的集合,称为按关系≥是半序的,而上述性质②则意在线性结构与序结构的协调。
向量格实例 ①设CR(Ω)是紧豪斯多夫空间Ω上全体实值连续函数,其上的加法与数乘如通常定义。对 x、y∈C(Ω)定义,当t∈Ω。这时(x∨y)(t)=max{x(t),y(t)},易见 CR(Ω)是向量格。②设(x,B)是可测空间。设V是全体在(x,B)上有限的,完全可加的集合函数。对μ1,μ2∈V 及实数α定义,
当E∈B。可以证明,V是向量格。③对希尔伯特空间H上有界线性算子A与B,如果对任何有界的T使AT=TA皆有BT=TB,则称B堻堻A。设 A是H上给定的有界自伴算子,令RA={H;BA},定义,当x∈H,则对有。这里而且C≥0,可以证明RA是向量格。
向量格的性质 在向量格中定义 ,x_=(-x)∨0,|x|=x∨(-x)依次称为x的正部分、负部分、绝对值。在向量格中,每个元x都有若尔当分解。这是有界变差函数以及抽象测度论中的结果的推广。
对向量格E中的一族元素,若有x∈E,使得x≥xα对一切α∈A成立,又任何y≥yα对一切,则称x为之上确界,记作。同样,可定义下确界在一般的向量格中,上方有界的点列未必有上确界。如果对Χ之任何上方有界点列,必有上确界,则称Χ 为σ-完备的。前述之向量格V与RA都是σ-完备的。
对E中的点列,若有单调递减的点列wn使得,而,则称xn序收敛于x0,记作。
设Χ为实的巴拿赫空间。如果Χ还是一个向量格,而且
,则称Χ为巴拿赫格。这是线性关系,格序关系以及范数的结合。
利用格序关系与序收敛,对σ-完备的向量格 Χ可定义绝对连续元素与奇异元素,从而将拉东-尼科迪姆定理推广成:Χ的每个元都可惟一地表示成绝对连续元与奇异元的和。又对某些σ-完备向量格中之元α,可惟一地确定一个单位分解{eλ;-∞<λ<∞},使,从而将自伴算子谱分解定理推广到适当的 σ- 完备向量格上。设Χ为巴拿赫格,如果还有x≥0,,则称Χ为抽象L1空间。可以证明有测度空间Ω使得这种Χ线性的,保范序同构于L(Ω),同样也可用格序关系与范数刻画Lp(Ω)与C(K),这里K是紧空间。
参考书目
关肇直编:《泛函分析讲义》,高等教育出版社,北京,1958。
A.C.Zaanen and W.A.J.Luxemburg,Riesz Spaces,North-Holland, Amsterdam,1971.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条