1) Metric right inverse
度量右逆
2) right inverse
右逆
1.
The study of the left and right inverse of elements in S_n;
S_n中元素的左、右逆的研究
2.
Some criteria of the nonexistence of right inverse for linear partial differential operator are obtained by using the point of inner support.
利用内支点给出了若干判定线性偏微分算子右逆不存在的方法。
3.
Schwartz posed the problem of determining when a linear differential operator P(D) has a (continuous linear)right inverse; that is,when does there exist a cintinuous linear map R such thatP(D)R(f) = f, for all f ( ) or all f D ( ) .
Schwartz提出了如何判断线性偏微分算子P(D)右逆的存在性问题。
3) Metric generalized inverse
度量广义逆
1.
Perturbation of Moore-Penrose Metric Generalized Inverse of Linear Operators in Banach Space
Banach空间中线性算子Moore-Penrose度量广义逆的扰动
2.
In this paper,we used the concept of metric generalized inverse,gave the characterization and construction of constrained extremal solutions of T(x)=h in the set of extremal solutions of L(x)=y.
运用线性算子的度量广义逆概念,在L(x)=y的极值解集合中,给出T(x)=h的约束极值解的精确刻画。
3.
Without the assumption that Banach space Y is reflexive and T is a densely defined linear operator with closed range from Banach space X to Y, it is proved that the metric generalized inverse of linear operator has closed convex range set-valued mapping by means of geometry of Banach space.
在Banach空间Y无自反和从Banach空间X到Y的线性算子T无闭值域和稠定的假定下,利用Banach空间几何方法证明了Banach空间中线性算子的度量广义逆是具有闭凸值的集值映射,建立了该度量广义逆的存在性、唯一性和等价表达式,并给出了此表达式的一个应用示例。
4) right-inverge
右逆系统
5) right invertibility
右可逆性
6) right inverse element
右逆元
补充资料:可公度量和不可公度量
可公度量和不可公度量
ommensulble and incommensuable magnitudes (quantities)
可公度t和不可公度t【~e璐u由lea目in~men-su.ble magultodes(quanti柱es);“洲口Mel娜M毗“”“”-113Mep目M曰e肠eJ皿,一皿曰』 如果两个同类量(例如两个长度或两个面积)具有或不具有公度(common measure,即另一个同类量,所考虑的两个量都是这个量的整数倍),则相应地称这两个量为可公度量或不可公度量.正方形的边长和对角线,或圆的面积和丫的半径的平方,都是不可公度量的例尹.如果两个量是可公度的,则‘l艺们的比是有理数;相反,不可公度量忿比是无理数、
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条