1) lower closed itemset
下闭集
1.
In this paper, we present the notations of upper and lower closed itemset of an itemset and obtain some useful properties of them, which can offer a theoretical basis for solving the problem of the.
本文主要针对项目集进行研究,提出了项目集的上、下闭集的概念,并得到了上、下闭集及其它们之间的一些性质,为解决规则数量问题提供了理论基础。
2) closed set
闭集
1.
F is closed set if and only if L(x, θ ;Fc)=0 μ-a.
F是闭集当且仅当L(x,θ;Fc)=0μ-a。
2.
We discuss topologies for complex Jsymplectic spaces and prove that each complete JLagrangian submanifold of the complex Jsymplectic spaces a closed set.
讨论了有限维和无限维复J -辛空间上的拓扑 ,并证明了复J -辛空间的每一个完全J -Lagrangian子流形都是闭集 。
3.
The definitions of the closure operator and closed set of a poset matroid are given at first,followed by the discussion of their relative properties.
给出了偏序集拟阵的闭包算子和闭集的定义,并讨论了其相关性质,推广了拟阵理论中的有关结果,同时指出闭包算子和闭集在偏序集拟阵理论与拟阵理论中的区别和联系。
4) closed aggregate
闭集
1.
Open set and closed aggregate in Function of Read VariaNe;
实变函数中的开集与闭集
5) Closed-Set (Closed,Closed-Valued) Corres-pondence
闭集(闭,闭值)对应
6) lower segment
下集
1.
The set of all Boolean association rules is just a lower segment of the graded poset.
由事物数据库的项目集构造一个分层偏序集,使所有布尔关联规则之集构成该分层偏序集的一个下集。
补充资料:闭集
闭集
dosed set
闭集ld吹d肥t买姗.叮l说M“馏ec佃],拓扑空间中的 含有它的所有极限点〔见集合的极限点(】imjtpolnt of a set)、的集合.于是,闭集的补集的所有点都是内点,所以闭集可定义为开集的补集.闭集的概念是把拓扑空间定义为具有满足下列公理的特定集合系统〔所谓闭集)的作空集X的基础:X本身和空集是闭集;任意个闭集的交是闭集;有限个闭集的并是闭集.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条