1) barycenter clustering method
质心聚类法
2) central clustering
中心聚类法
3) Centroid of clustered region
聚类区域质心
4) K-Medoids method
K中心聚类方法
5) K-means Cluster Algorithm
K-均质聚类算法
6) clustering center
聚类中心
1.
New structure algorithm of clustering center and category determination method;
新的聚类中心构造算法及类别判定方法
2.
With the Kohonen network clustering in neural network employed, the degree of relationship of the universal joint axle of the rolling mill was input to Kohonen network as the training sample, studied and clustered by the network to generate different clustering centers according to the different depth and different degree of relationship among the cracks.
由于裂纹深度不同 ,裂纹故障的关联度不同 ,于是网络便产生不同的聚类中心点 。
3.
With the characteristics of the Kohonen network clustering in neural network,the degree of relationship of universal joint axis of rolling mill is input to Kohonen network as training sample,and is studied and clustered by the network to generate different clustering centers owing to the different depth and different degree of relationship among severity of crack.
利用神经网络中Kohonen网络聚类的特点,把小型轧机万向接轴裂纹故障的不同关联度,作为Kohonen网络的训练样本输入到Kohonen网络中去,并由Kohonen网络学习和聚类产生不同的聚类中心点。
补充资料:动态模糊聚类法
分子式:
CAS号:
性质:又称动态模糊聚类法。选定一批聚类中心,其指标能反映该类的特征,将样本向最近的聚类中心聚类。再根据分类结果确定新的聚类中心,其各项指标为该类中所有样本的相应指标的平均值。然后计算前后两聚类中心的差异,如差异大于某一阈值,说明分类不合理,需修改分类,即以新的聚类中心代替旧的聚类中心,直到前后两聚类中心的差异小于某一阈值,认为分类合理,从而终止分类过程。
CAS号:
性质:又称动态模糊聚类法。选定一批聚类中心,其指标能反映该类的特征,将样本向最近的聚类中心聚类。再根据分类结果确定新的聚类中心,其各项指标为该类中所有样本的相应指标的平均值。然后计算前后两聚类中心的差异,如差异大于某一阈值,说明分类不合理,需修改分类,即以新的聚类中心代替旧的聚类中心,直到前后两聚类中心的差异小于某一阈值,认为分类合理,从而终止分类过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条