1) Blow-up analysis
Blow-up分析
1.
Using Mini-Max method and Blow-up analysis,the existence for the solution of a class of the Laplace equation with an exponential Neumann boundary condition was given when the parameter lies in a certain interval.
该文应用Mini-Max方法和Blow-up分析,证明了当参数在一个取值区间内时,一类Laplace方程在非线性指数增长型Neumann边界条件下解的存在性结论。
3) blowing-up
Blow-up现象
1.
This paper is concerned with the blowing-up problem of the initial boundaryvalue problem for quasilinear parabolic equationHere D Rn is a Bounded or unbounded domain.
利用上、下解方法,并借助Green函数,给出了问题(I)全局解的存在性条件,也给出了局部解发生Blow-up现象的条
4) estimate of the Blow up
Blow up估计
5) blow-up rate
blow-up速率
1.
The propertiesof solutions to the four types of nonlinear parabolic equations (systems)have been studied in this dissertation, such as, support properties, uniformboundedness, global existence, finite-time blowup, and blow-up rate, etc.
本文研究了四类非线性抛物方程(组)解的性质,例如解的支集的性质,解的一致有界性,解的整体存在性,有限blow-up性,blow-up速率等。
2.
In the last Chapter, We further simplify the equations as a single equation of the problem issues, using the comparison principle for many times , obtained the Blow-up rate estimates of the solutions.
并进一步研究得出了u(1,t),v(1,t)分别具有如下形式的Blow-up速率:u(1,t)=O((T-t)~(-k_1)),e~(v(1,t))=O((T-t)~(-k_2)),(k_1,k_2)是如下特征代数方程组的解。
6) blow-up
blow-up技巧
1.
Some results of the existence of solutions are demonstrated by employ the blow-up technique、prior estimate and Moser iterative method .
本论文主要研究了带非线性边值条件的一类椭圆型方程及方程组的问题,通过blow-up技巧、先验估计和Moser迭代的方法证明了解的存在性,改进或推广了已有文献中相关的结论。
补充资料:吹管分析(blow-pipeanalysis)
【吹管分析】(blow-pipeanalysis)定性分析法之一。将固体试样(有时另加试剂)放在木炭的凹穴中,用吹管吹火焰于被分析有试样上,借所呈现的现象如颜色、气味等,以鉴定某些元素或化合物的存在。通常用于矿物、无机物等的鉴定。设备简便,操作方便。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条