1) F*-space
赋准范空间
1.
We discuss the relation of the boundedness (normbounded and pseudobounded)in F*F*-space.
对赋准范空间的有界性、按范有界及拟有界之间的关系进行了讨论 。
2) quasi-normed space
赋准范空间
1.
<Abstrcat> The uniform boundedness of additive operator family is proved on psuedo-bounded set of the second category quasi-normed space .
在第二纲的赋准范空间上,证明了可加算子族在拟有界集上的一致有界性。
2.
At first, the resonance theroem is extended from β -mormed space of second category to the addible operator family in quasi-normed space of the same category, and then expand it further to the normed γ -quasi-subadditive operator family and generalized normed γ -quasi-subadditive operator family in quasi-normed space of the same category.
将“共鸣定理”由第二纲的赋 β-范空间推广到第二纲的赋准范空间上的可加算子族上 ,然后再将其扩展到第二纲的赋准范空间上按范γ-拟次加算子族上及广义按范γ-拟次加算子族上 。
3) F~*-space
赋准范空间
1.
The boundedness,norm-bounded and pseudobounded of F~*-space;
赋准范空间中几种有界性讨论
2.
The strong boundedness、boundedness、continuous of the operator T in F~*-space;
赋准范空间中算子T的强有界、有界和连续性
5) LF Pre-normed space
LF赋准范空间
补充资料:赋范空间
赋范空间
pauuou
斌范空I’N[加的侧纽只,沈;加opM即0~oe npoc,皿c,01 实或复数域上具有一个特定范数的向,空间(vec-tor sPace),E .A.几p叫撰葛显良译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条