1) quasi-variational inclusion
拟变分包含
1.
A finite family of generalized set-valued quasi-variational inclusions in Banach spaces;
Banach空间中有限簇广义集值拟变分包含
2.
In this paper,we introduce firstly a new class of completely generalized and strongly nonlinear quasi-variational inclusions.
首先引入了一类新的完全广义强非线性拟变分包含,运用预解算子方法,建立了找到完全广义强非线性拟变分包含近似解的迭代算法。
2) quasi-variation-like inclusions
拟似变分包含
1.
This paper studies a completely generalized nonlinear quasi-variation-like inclusions problem in the setting of locally convex topological vector spaces and proves the existence its solutions.
似变分不等式和广义拟似变分包含问题是研究非凸最优化问题、非凸和不可微最优化问题的重要工具。
3) generalized set-valued quasi variational inclusion
集值拟变分包含
1.
Perturbed iterative algorithms with errors for generalized set-valued quasi variational inclusions in Banach spaces;
Banach空间中广义集值拟变分包含的带误差项的摄动迭代算法
4) generalized quasi-variational inclusion
广义拟变分包含
1.
Existence and approximation of solutions to generalized quasi-variational inclusions in Banach space;
Banach空间中广义拟变分包含解的存在与逼近
2.
The approximation problem of solutions to a class of generalized quasi-variational inclusions including k-subaccretive mapping and φ-strongly accretive mapping without compactness conditions is investigated.
研究了一致光滑实Banach空间中含k-次增生映射和φ-强增生映射的一类无紧性条件的广义拟变分包含解的逼近问题,给出了具混合误差的Ishikawa迭代序列强收敛到广义拟变分包含解的特征定理,所得结果改进和推广了近期许多相关结果。
6) multi-valued quasi-variational inclusions
多值拟变分包含
1.
We use the implicit resolvent equations technique to study the sensitivity analysis for the generalized multi-valued quasi-variational inclusions.
借助隐预解算子技巧来研究广义多值拟变分包含的灵敏性分析。
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条