说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 严有效解
1)  strictly efficient solution
严有效解
1.
Optimality conditions for vector optimization problem to attain strictly efficient solutions are considered in the paper.
本文研究向量优化问题在严有效解意义下的最优性条件。
2.
In this paper a new concept,the strictly efficient solution, is introduced, the Cone-continuous convex map and the connectedness of the set of strictly efficient solution,are studied further.
文中介绍了严有效解的概念,研究了锥—连续拟凸映射的严有效解的连通性。
3.
In this paper, we introduce a new concept the strictly efficient solution.
本文介绍了严有效解的概念,并在[1]工作的基础上进一步研究了锥连续拟凸映射的严有效的连通性。
2)  ε-strict efficient solutions
ε严有效解
1.
In locally-convex topological vector spaces, ε-strict efficient points and ε-strict efficient solutions are introduced.
在局部凸拓扑向量空间中引入了ε严有效点、ε严有效解的概念。
3)  strict efficient
严格有效解
4)  strictly local effective solution
严格局部有效解
5)  strictly efficient points
严有效点
1.
We prove that strictly efficient points are indeed equivalent to Henig proper efficient points.
文章证明了严有效点等价于 Henig真有效点。
2.
In this paper, a few optimatity conditions for strictly efficient points of set valued optimization are presented by using the concept of contingent derivatives of set valued mad.
该文利用集值映射的三种切上导数概念 ,给出了向量集值优化问题中严有效点的最优性条件。
3.
Particularly, we show that in reasonable settings the strictly efficient points of a set are dense in the efficient points.
本文引入一个新的有效点概念一严有效点,它是Borwein超有效点的推广。
6)  strict efficiency
严有效性
1.
The set-valued optimization problem with constraints(SOP) is considered in the sense of strict efficiency in Hausdorff locally convex linear topological spaces.
在Hausdorff局部凸拓扑线性空间中考虑约束集值优化问题的严有效性。
2.
The set-valued optimization problem with constraints VP is considered in the sense of strict efficiency in Hausdorff locally convex and topological linear spaces.
在Hausdorff局部凸拓扑线性空间中考虑约束集值优化问题(VP)在严有效性意义下的标量化问题,给出了VP在严有效性意义下的一种等价刻画。
3.
We extend the definition of strict efficiency to vector optimization with set valued maps,and research its character in a systematic way.
将严有效性概念推广到集值映射向量优化问题,并较为系统地研究了它的性质,获得了有关标量化、 Lagrange 乘子、 Lagrange 型对偶及严有效点集的连通性、稠密性等方面的几个结
补充资料:楞严经会解
【楞严经会解】
 (书名)二十卷,元释惟则会解。其自序曰:“余见长水璇师,孤山圆师,泐潭月师,温陵环师之说。又阅吴兴岳师之集。并得兴福,悫资,中沇,真际,节槜李敏诸师之意,无不大同。惟所见或各从一长,乃不能不小异。(中略)今余会诸家要解以通大途,异不公乎众者节之,异而互通者互存之,互为激扬者,审其的据而节取之。间有隐略乖隔处,则又附己意,自为补注。若合殊流同归于海,故谓之会解。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条