1) quintic polynomial system
五次多项式系统
1.
In this paper,the problem of limit cycles bifurcated from the equator for a quintic polynomial system is investigated.
运用奇点量方法,首次证明了五次多项式系统可在赤道分支出十个极限环。
2) quintic polynomial
五次多项式
1.
And then,the quintic polynomial curvilinea motion law is used to improve the design of key position of guide rail.
以南京造币厂J98型印钞机为研究对象,对传统收纸链条导轨的布局进行了运动学分析,并指出了其存在的弊端,然后利用五次多项式曲线运动规律对导轨的关键部位进行了改进设计。
2.
The quintic polynomial to simulate the locomotor orderliness of the paper feeding tooth are adopted,then proceed to the next step,the mathematic model of the contour line for conjugated cam are established.
采用五次多项式来模拟递纸牙的运动规律,进而建立求解共轭凸轮廓线数学模型。
3) cubic polynomial system
三次多项式系统
1.
A cubic polynomial system with six limit cycles at infinity;
一个在无穷远点分支出6个极限环的三次多项式系统
4) higher polynomial system
高次多项式系统
1.
Qualitative analysis for a class of higher polynomial system;
一类高次多项式系统的定性分析
2.
Study on limit cycles for a class of higher polynomial system;
一类高次多项式系统极限环的研究
3.
By transformation, we change a class of higher polynomial system into a Lienard s system.
通过变换将一类高次多项式系统化为Lienard系统,利用Hopf分枝定理和张芷芬唯一性定理,证明了该类系统极限环的存在性与唯一性。
6) higher degree polynomial system
高次多项式系统
1.
In this paper,we transform a class of the higher degree polynomial system into the generalized Liénard system and discuss the existence of limit cycles for this system by using the abundant results of the generalized Liénard system,the sufficient conditions of the existence and nonexistence of the limit cycles for these systems are obtained.
通过变换将一类高次多项式系统转化为广义Liénard系统,并利用广义Liénard系统的结果研究了其极限环存在性问题,得到了极限环存在与不存在的充分条件。
2.
We transform a class of the higher degree polynomial system into the generalized Liénard system and discuss the existence of limit cycles for this system by using the abundant results of the generalized Liénard system.
通过变换将一类高次多项式系统转化为广义Liénard系统,并利用广义Liénard系统的结果研究了其极限环存在性问题,推广了相关文献的结果。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。