1) left seminormal cryptogroup
左半正规密群
1.
The purpose of this paper is to give an identity of locally left regular orthocryptogroups and to prove that a completely regular semigroup is a left seminormal cryptogroup if and only if it is a locally left regular orthocryptogroup.
证明了一个完全正则半群是左半正规密群当且仅当它是局部左正则纯正密群。
2) left normal typeAmonoids
左正规型A幺半群
3) normal orthocryptou semigroups
正规纯正密码半群
4) left regular semigroups
左正则半群
1.
In ChapterⅡ,several equivalent conditions and simple nature of left regular semigroups are given.
本文主要研究了左正则半群,正则子集以及GV-半群。
5) left seminormal band
左半正规带
1.
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群 。
6) normal cryptogroup
正规密群
1.
The paper gives the definition of perfectly superabundant semigroup,and then studies homomorphisms between perfectly superabundant semigroups and the homomorphisms between cryptogroup,regular cryptogroup and normal cryptogroup.
给出了完备超富足半群的定义,然后得到完备超富足半群的同态定理及其密群、正则密群、正规密群的同态定理。
补充资料:正规子半群
正规子半群
nonnal sub-semi-group
正规子半群[仪曰司劝一胭‘一,叫p;皿opM~aano压no几yrp”扭a],半群S的 满足下述条件的子半群H:对任意满足xy‘S的x,y任S‘(记号夕见正规复形(加m司印nlp嫉”和任意h任H,关系xhy〔H与x夕任H等价.5的一个子集是正规子半群,当且仅当在S到某个带单位元的半群(阴n刀一grouP)的满同态下,它是单位元的完全反象.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条