1) discrete matrix Lyapunov equation
离散矩阵Lyapunov方程
1.
The problems of characteristic estimation for the solution to the perturbed discrete matrix Lyapunov equations are studied.
探讨了摄动离散矩阵Lyapunov方程解的特征估计问题。
2.
The estimation of the solution to the perturbed discrete matrix Lyapunov equation is studied.
研究摄动离散矩阵Lyapunov方程解的估计问题,利用矩阵运算性质及Lyapunov稳定性理论,给出在结构不确定性假设下方程解的存在条件及解的上下界估计,估计结果由一个线性矩阵不等式(LMI)和两个矩阵代数Riccati方程确定。
2) Lyapunov matrix equation
Lyapunov矩阵方程
1.
Using Schur triangular theorem of complex square matice and induction,an elementary proof for the condition of existence and uniqueness of Lyapunov matrix equation is presented.
利用复方阵的Schur三角化定理和数学归纳法给出Lyapunov矩阵方程存在唯一解的充要条件。
2.
The content of this paper consists of two parts:part one is how to solve the linear systems Ax=b iteratively,which coefficient matrices are centrosymmetric matrices; part two pays attention to solving the Lyapunov matrix equations and Sylvester matrix equations in control theory by numcrical methods.
本论文主要分为两部分:一部分是考虑了系数矩阵为中心对称矩阵的线性方程组Ax=b的迭代求解;另一部分是研究了控制理论中的Lyapunov矩阵方程和Sylvester矩阵方程的数值求解。
3.
Solving linear and nonlinear matrix equations such as the Lyapunov matrix equation and the Riccati matrix equation is one of important topics in the fields of numerical algebra and nonlinear analysis.
Lyapunov矩阵方程和Riccati矩阵方程等线性和非线性矩阵方程足数值代数和非线性分析中研究和探讨的重要课题之一。
4) Lyapunov matrix differential equation
Lyapunov矩阵微分方程
5) mixed-type Lyapunov matrix equation
混合型Lyapunov矩阵方程
1.
In this paper,we study the problem about the symmetric positive definite solution to a class of mixed-type Lyapunov matrix equations.
本文研究了一类混合型Lyapunov矩阵方程的对称正定解问题。
2.
Symmetric solution of the mixed-type Lyapunov matrix equation A~TX+XA+B~TXB= C is solved by using an iterative algorithm with a parameter.
采用参数迭代法求一类混合型Lyapunov矩阵方程A~TX+XA+B~TXB=C的对称解。
6) generalized mixed-type Lyapunov matrix equation
广义混合型Lyapunov矩阵方程
1.
Multiple parameter iteration-correction method for solving the generalized mixed-type Lyapunov matrix equation AX+XB+CXD=F is discussed.
讨论广义混合型Lyapunov矩阵方程AX+XB+CXD=F的多参数迭代校正方法。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条