1) p-irreducibility
p-不可约
1.
Some results for determining p-irreducibility of binding polynomials;
键合多项式p-不可约的一些结果
2.
Two theorems for determining p-irreducibility of binding polynomials with degree five;
五次键合多项式P-不可约的两个定理
3.
The Necessary and Sufficient Condition for Determination of p-Irreducibility of Positive Polynomials with Degree 3;
三次正多项式p-不可约的充要条件
2) irreducible p-Braure character
不可约p-Braure特征标
3) irreducible module
不可约模
1.
This paper presents a resentch of the irreducible module of Lie algebra by studying minimal left ideal of reducible envelop algebra.
通过研究李代数的既约包络代数的极小左理想来研究李代数的不可约模,对于htχ<1,确定了特征p=2上的Witt代数W(2,1)的χ-既约包络代数的所有极小左理想。
2.
The weight set of an irreducible module for the algebraic group G of type A over an algebraically closed field of characteristic p>0 is described in the present note by constructing a nonzero vector with weight μ.
通过详细构造权为μ的非零向量,决定了特征p>0的代数闭域上A型代数群G的不可约模的权集。
3.
If t∈G,o(t)=2 and V/Cv(t)=2,then V=V1V0,V0=Cv(G);If V/CV(G) is G natural module ,then V=V0,( is G irreducible module,/C(G) is G natural module,and |C(G)|≤2,V0≤CV(G).
考察了L(3,2)的GF(2)模可分解成不可约模的直和,若V为G的非凡模且t∈G,o(t)=2能使V/Cv(t)=2,则V=V1 V0,其中V1为G自然模,V0=CV(G);若V/CV(G)为G自然模,则V= A V0,其中 A为G不可约模, V/C V(G)为G自然模,且|C V(G)|≤2,V0≤CV(G)。
4) irreducible
[英][,ɪrɪ'dju:səbl] [美]['ɪrɪ'dusəbḷ]
不可约
1.
Diagonal Transformations for the Computation of the Perron Root of a Nonnegative Irreducible Matrix
计算非负不可约矩阵Perron根的对角变换(英文)
2.
First,the authors obtain the bounds for the Perron roots of irreducible matrices,furthermore,based on the suitable similarity transformation,the estimation for the Perron roots of reducible matrices is obtained.
基于非负矩阵Perron根的理论应用于很多领域,据此,研究了非负矩阵Perron根的界的估计,获得了非负不可约矩阵Perron根的界,进而在适当的相似变换基础上得到非负可约矩阵Perron根的界的估计。
3.
This paper mainly describes finite group automata through the study of their incidence rings and induced graphs,and gives the principles to judge the irreducible and the indecomposable of finite group automata.
通过研究有限群自动机的关联环和导图来刻画有限群自动机,给出了有限群自动机不可约和不可分的一些判别法则。
5) strongly irreducible
强不可约
1.
We discussthe propertiesofthe adjoint operator of unilateral weightedshift,prove that is astrongly irreducible Cowen- Douglas operator, and compute the 0 group of the commutant algebra of .
计算了代数я(D)={f:f在开圆D盘上解析,在■上连续}的K_0群,讨论了内射单边加权移位算子的伴随算子的性质,证明了是强不可约的Cowen-Douglas算子,然后计算出的换位代数的K_0群。
2.
Ji Y Q [5] have proved that the closure of the unitary orbit of the strongly irreducible operators in continuous nest algebras is equal to the set of all biquasitriangular operators whose spectrum is connected.
纪友清[5]等人得出:连续套代数中强不可约算子酉轨道闭包是全体谱连通的双拟三角算子。
3.
Suppose that T is strongly irreducible and (sup)1k<∞‖W~(-1)_k‖<+∞.
设T是强不可约的,而且sup1k<∞‖W-1k‖<+∞。
6) irreducible graph
不可约图
1.
In this paper, it has shown that P n is irreducible graph if and only if n+1 is prime when n≥4 .
用Pn 表示n阶的路 ,证明了n≥ 4时 ,Pn 是不可约图当且仅当n + 1是素数 ,从而得出若干新的色惟一图 。
补充资料:不可约簇
不可约簇
irreducible variety
不可约簇【jm汕叻以ev赴让勺;uenpHBO脚oe袖oroo6pa-3He} 在z助的目石拓扑(乙山ski topo10gy)下是一个不可约拓扑空间(沂司ucjble topo10gical space)的代数簇(algebmic峨币ety).换句话说,一个代数簇称为不可约的,如果它不能表示成两个真闭代数子簇的并.概形的不可约性可类似地定义,对于光滑(甚至正规)簇,不可约的概念与连通的概念是相同的.每个不可约簇有唯一的一般点(见一般位置点(pointin罗ne份1 posi-tion)). 与一个拓扑空间到不可约分支的分解相类似,任何一个代数簇是有限多个不可约闭子簇的并.这种表示法(可以用更精确的方式表达出来)的代数基础是交换NDe廿祀r环的准素分解(pnn飞lryd绷1llP戊ition). 在代数闭域上不可约簇的积亦是不可约的.对于任意基域,这不再正确.关于不可约簇的概念的另一种说法也是有用的:域k上的簇X称为几何不可约的(g印metricaUy ir代月ucible),如果对于k的任何域扩张k‘,通过换基(base cllange)从X得到的簇X⑧*灯仍为不可约.B.H.从a~oB撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条