1) P-arcwise connected
伪弧连通
2) arcwise connected convex
弧连通凸
1.
In the framework of locally convex topological vector space,the scalarization theorem,Kuhn-Tucker conditions as well as the duality theorem and the saddle points theorem on Henig proper efficient solutions with respect to the base for vector optimization involving arcwise connected convex maps are established separately.
在局部凸拓扑向量空间中,建立了弧连通凸映射向量优化问题关于基的Henig真有效解的标量化定理、Kuhn-Tucker条件、对偶性定理以及鞍点定理。
2.
In this paper, the concept of the arcwise connected convex set-valued maps is introduced in topological spaces and a theorem of alternative established.
在拓扑向量空间中引入弧连通凸集值映射的概念 ,建立了择一定理 ,证明了标量化定理和La grange乘子定理。
4) arcwise connected
弧连通
1.
In R~n spaces,we study optimality sufficient conditions and dual model for non-convex maximum and minimal fractional problems,under arcwise connectedness and generalized arcwise connectedness assumptions.
通过引入广义弧连通概念,在R~n空间中,研究极大极小非凸分式规划问题的最优性充分条件及其对偶问题。
5) Q-arcwise connected
拟弧连通
6) arcwise connected set
弧连通集
1.
We introduce the definition of arcwise connected function on arcwise connected set SR~n and give the related concepts of generalized arcwise connected functions,which satisfy the global optimality.
介绍在弧连通集S Rn上的实值函数f:S→R是弧连通函数的定义,给出相关的广义弧连通函数概念。
补充资料:伪弧
伪弧
pseudo-arc
伪弧[声川。一arc;nee卿珊al 一个遗传不可分解的不止含有一个点的蛇形连续统(51份ke一l溉colltintlum).M.H.Bo盛取xoBcK晾撰【补注】在英文文献中伪弧前带有定冠词“此”,这是因为任何两条伪弧都是同胚的“A2}).和弧10,11一样、伪弧同胚于它的每个非退化子连续统(IA7」).还有,和圆一样,伪弧是齐性的(【Al}).伪弧的独有特点(必然是独有的)是:“几乎所有的连续统都是伪弧”;更确切地说,在n维胞腔(。)2)的子连续统组成的超空间(hyl咒招p毗)中,伪弧组成一个剩余集(!A31).所有非退化的齐性蛇形连续统都是伪弧(IA4}).这些基本性质的简单证明以及某些推广见IAS」,〔A61,「A8」.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条