1) reflexive inverse
自反逆
1.
By applying the properties of general anti-symmetric unitary anti-symmetric matrix and the theory of reflexive inverse of matrix,the sufficient conditions for the existence and the common expressions of general anti-symmetric unitary anti-symmetric solutions of matrix equation AX=C and the system are presented.
利用广义反对称酉反对称矩阵的性质和矩阵的自反逆的理论,得到了实四元数矩阵方程AX=C和矩阵方程组的广义反对称酉反对称解的存在条件及其通解表达式。
2) self-reflective g-inverse
自反g-逆
1.
A fast algorithm for calculating the inverst and self-reflective g-inverse and group inverse and Moore-Penrose inverse of the scaled factor circulant matrices of order n is presented by the fast Fourier transform (FFT).
借助快速付立叶变换(FFT),本文给出一种求n阶鳞状因子循环矩阵的逆阵、自反g-逆、群逆、Moore-Penrose逆的快速算法,该算法的计算复杂性为O(nlog2n),最后给出的两个数值算例表明了该算法的有效性。
2.
A fast algorithm for calculating the inverse and self-reflective g-inverse and group inverse and Moore-Penrose inverse of the permutation factor circulant matrices of ordern is presented by the fast Fourier transform(FFT).
借助快速傅立叶变换(FFT),给出一种求n阶置换因子循环矩阵的逆阵、自反g-逆、群逆、Moore-Penrose逆的快速算法,该算法的计算复杂性为O(nlog2n),最后给出的两个数值算例表明了该算法的有效性。
3) reflexive g-inverse
自反g-逆
1.
By applying a decomposition of pairwise matrices,we give some equivalent conditions for two m×n matrices being block independent in g-inverse and reflexive g-inverse over a division ring.
通过使用除环上具有同行或同列的双矩阵分解定理,给出了除环上两个同阶矩阵的g-逆和自反g-逆具有子块独立性的充分必要条件。
2.
By applying the decomposition theorem, we obtain some neccessary and sufficient conditions of reverse order laws for g-inverse and reflexive g-inverse of matrix products on an arbitrary skew field.
利用该分解定理作为工具,获得了任意体上矩阵乘积的g一逆和自反g-逆的反序律的充分必要条件。
4) reflexive g-inverse
自反广义逆
1.
In this article we study the relations among D1, D2, D3, D4, which are in the reflexive g-inverse matrixM-r=D1D2D3D4of the bordered matrixM=ABC0.
该文研究加边矩阵M =ABC 0的自反广义逆M-r =D1D2D3 D4中的子矩阵D1,D2 ,D3 和D4的关系 ,还研究了矩阵 A-r C-rB-r 0 和M-r 之间的关系。
5) antireflexive relation
逆自反关系
6) Reflexive generalized inverse operator
自反广义逆算子
补充资料:提婆五逆与三逆
【提婆五逆与三逆】
(故事)(参见:五逆)
(故事)(参见:五逆)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条